@
DeAWARE

beAWARE

Enhancing decision support and management services in extreme weather
climate events

700475

D4.1

Social media crawling and monitoring
of multiple sensing platforms

Dissemination level: | Public

Contractual date of delivery: | Month 12, 31 December 2017

Actual date of delivery: | Month 12, 22 December 2017

Workpackage: | WP4 Aggregation and semantic integration of
emergency information for decision support and early
warnings generation

Task: | T4.1 Social media monitoring

T4.2 Monitoring machine sourcing information from loT
and M2M platforms

Type: | Report

Approval Status: | Final

Version: | 1.0

Number of pages: | 48

Filename: | D4.1_beAWARE_social-media-crawling-monitoring-
multiple-sensing-platforms_2017-12-19 v1.0

BBl This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant
agreement No 700475

Abstract

This deliverable reports on social media crawling and multiple sensing platforms. Social
media monitoring involves the collection and relevance classification analysis of Twitter
content and multiple sensing platforms are associated with the processing of beAWARE’s
sensor data, along with their storage and metadata indexing. The initial version of the
considered modules is presented in this document, in accordance with the pilot use case
requirements in terms of data collection, and the position of the modules within the
beAWARE overall platform. Deliverable D4.1 sets also the basis for further improvements by
presenting the directions towards the advanced version of social media monitoring and of
the framework for managing the multiple sensing platforms.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

Co-funded by the European Union

L This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant
agreement No 700475

o
heAWARE D4.1-V1.0

History

Version Date Reason Revised by

0.1 18.10.2017 Deliverable structure Stefanos Vrochidis (CERTH)

0.2 01.11.2017 Deliverable draft Stelios Andreadis (CERTH)

0.3 01.12.2017 Additional contribution Hylke van der Schaaf (I0SB),
Juirgen Molgraber (I0SB)

0.4 12.12.2017 Ready for internal review Stefanos Vrochidis (CERTH),
Anastasios Karakostas (CERTH)

0.5 15.12.2017 Internal review Stamatia Dasiopoulou (UPF)

1.0 22.12.2017 Final version Anastasios Karakostas (CERTH)

Author list

Organisation Name Contact Information

CERTH Stelios Andreadis andreadisst@iti.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

CERTH Anastasios Karakostas akarakos@iti.gr

I0SB Hylke van der Schaaf hylke.vanderschaaf@iosb.fraunhofer.de
0SB Jirgen MoRgraber juergen.mossgraber@iosb.fraunhofer.de
I0SB Philipp Hertweck Philipp.hertweck@iosb.fraunhofer.de

Page 3

o
heAWARE D4.1-V1.0

Executive Summary

This deliverable reports on the first version of beAWARE's social media crawling and multiple
sensing platforms, which collect and process social and sensor data. Sensor data and social
data are two different sources of information which are involved in beAWARE project. The
analysed content from both sources of information contributes to the delivery of a more
comprehensive user experience. Both tools are discussed, in their first version, including
directions for further improvements, in the context of beAWARE.

The social media monitoring tool involves the crawling, representation, storage and analysis
of Twitter content, aiming to classify tweets as relevant or irrelevant to each use case
scenario, for all languages considered, i.e. Greek, Italian, Spanish, and English. Relevance
classification analysis aims to deliver to the beAWARE end user information that is
potentially useful for decision makers, emergency managers and operators, through
effective visualisations. The social media information is then passed to the text analysis
module to extract concepts and locations from text, before sent to the Knowledge Base for
integration and decision making. The social media monitoring module offers information
from citizen observations that serves complementary to the text messages, audio messages,
images and videos which are sent by the first responders.

Sensor data are also involved in the decision making process. This report presents a unified
way to access not just the data from a multitude of different types of sensors, but also the
meta-data about these sensors. A sensor network is crucial for making decisions in any area
of operation, so the methods and tools for utilising the information from sensor data are
presented in detail in this document.

Page 4

@
heAWARE

D4.1-V1.0

Abbreviations and Acronyms

AAWA
API
BOW
CBOW
DCNN
DF
FMI
HTTP

ISO
JSON
KB
K-NN
LSl
MI
MPEG
NN
O&M
0GC
PSAP
REST
RF
SBS
SFS
SIFT
SOS
SURF
SVM
TF

Alto Adriatico Water Authority
Application Programming Interface
Bag-of-Words

Continuous Bag-of-Words

Deep Convolutional Neural Network
Document Frequency

Finnish Meteorological Institute
Hypertext Transfer Protocol
Information Gain

International Standards Organisation
JavaScript Object Notation
Knowledge Base

k-Nearest Neighbors

Latent Semantic Indexing

Mutual Information

Moving Picture Experts Group
Neural Networks

Observation & Measurement model
Open Geospatial Consortium

Public Service Answering Point
Representational State Transfer
Random Forests

Sequential Backward Selection
Sequential Forward Selection
Scale-Invariant Feature Transform
Sensor Observation Service
Speeded Up Robust Features
Support Vector Machine

Term Frequency

Page 5

@
heAWARE

D4.1-V1.0

TFIDF
URL
VSM
WCS
WFS

WMS

Term Frequency Inversed Document Frequency
Uniform Resource Locator
Vector Space Model

Web Coverage Service
Web Feature Service

Web Map Service

Page 6

o
heAWARE D4.1-V1.0

Table of Contents

1 INTRODUCTION....ciitiitireiiniieiieeiteitaitaieestesiasiascssstastasssssssstsssassessssssassassassssssassassssssassas 8
2 ARCHITECTURE....ccititiititiiieiieiienienienieeitesiaiieeseesiostsstesssestasiassassssstossasssssssssnssassasssnssans 9
3 SOCIAL MEDIA MONITORINGccucituiiniinniienicinicisicisisissiessiessssssssssssssssssssssssssesnsens 10
3.1 Framework OVEIVIEW.......cccveuueeniiiiiiiiiinnneiniiiiiiiinensssiiiiesssmesissssssssesssses 10
3.2 Data collection from TWitter........ccoiiiirmmuiiiiiiiiiiininrr e seaes 12
3.3 Data collection reqUIremMents........cccceciieeiiieeeieerirteerteenerenerenerenseeresseresserssssssnsessnseeses 12
3.4 Data representation from Twitter CONtentccceveeiiieeiireeiiiiieieeeerencereeereeeeerneeeennnenes 14
3.5 Data annotation and training set creation.......cccccueeeieerireniiteereecerencereeereeseernneeensenes 17
3.6 Social media multimodal classification.......ccccccceiiiiiiiiirnniiiiiniiinnn, 20
3.6.1 Social media image classifiCationccccoccuiiiiiciiie e e 20
3.6.2 Social media text classificationccceieceiiiee i 22

T ST B XY - [T 1 4 e o TS SPUTSRN 26

3.7 Integration of the social media module into the beAWARE system........ccccccoveeenirnenann. 35

4 MULTIPLE SENSING PLATFORIMEScciiuiiiuiriiiniineiineiineireisrasiassisssisssssssssssssssssssssanss 37
4.1 S NS OF TYPS . iuuiruiiruiieniiniinsinisisiteeitesiiassractsessstssstssstsssrsssssssssssesssosssasssssssnssasssasssnnss 37
4.2 [F= = T N o =N 38
0t R N1 o (=BT 4 T TP PP PP PPPUPTN 38
4.2.2 GEOSPALIAl COVEIAEES . .vviiiieiiieeicciieee ettt e e ettt e e e ettt e e e ette e e e e ebteeeseebteeeesbtaeeesastseaeenseneaeases 38
Ve T [0 o 1= LT o [T o =Yg o [o S UPRPNt 39

4.3 o N 39
A.3.1 FIOOM PilOt....uiieiieeiieeiiee sttt ettt st e st e sbte e s abeesabaeesabeesabaesnateesbeeenns 39
A.3.2 FIFE PIlOT. ittt ettt sttt et e b e e sabe e s beesbeeesbeeeans 40
4.3.3 HEAtWAVE PilOt....ciciieiciie ettt ettt tee e st e s te e e be e e s nte e steeennaeeenneeenns 40

4.4 OGC SensorThings APl Data Modelccceueeiiiieieiiiiccrreiecerreencereeeaseseenasesesansssenas 40
4.5 Mapping the sensors onto the Ontologycccceeiiieiiiieiiiiiiiiicrrrcrrc e eeeeees 43
Tt R 10 o (=BT =T PP PPTPPPPPN 44
4.5.2 GEOSPALIal COVEIAEES . .vviiiiiiiiieieiieee ettt e ettt e e ectte e e e ette e e e s ettr e e e esbteeeesbtaeessrtaeeesseneeesnes 44
T T [0 o 1= T Yo o ANV AT 1T o R PRSP 44

5 CONCLUSIONS.....cucittiiitiinniitniiraisrassiaestsesiasssssssssssrsssrssstasstesstensssnsssssssssssasssassssssssnssne 45
6 REFERENCES......ccciitiiiiiiniieiiiieiieieisesiesiaiiaessesiontasisessestastassssssastassassssssassassassssssanse 46

Page 7

o
heAWARE D4.1-V1.0

1 INTRODUCTION

Disaster monitoring based on sensor data and social media posts has raised a lot of interest
in the domain of computer science the last decade, mainly due to the wide area of
applications in public safety and security. The abundant nature of these data renders them
as one of the most valuable sources to extract and deduct early warnings or identification of
an ongoing or eminent disaster (Imran et al., 2015). This deliverable presents the first
version of the considered social media monitoring and sensor data collection framework in
beAWARE.

As far as social media are concerned, we present the framework developed for monitoring
the flow of Twitter posts. The data collection from Twitter is ensured by connecting to the
Streaming API of Twitter. Crawled data are stored and indexed, as a pre-processing step
before their analysis, which focuses, at this version, on their classification as relevant or not
to the considered pilot use cases. In the proposed beAWARE classification approach both
visual (if any) and textual modality participate in the relevance classification stage.

In the case of sensor data, data types are firstly identified and discussed, especially the
meta-data which are involved in sensor data wrappers. Moreover, the relation of the
considered data and sensor types to the beAWARE pilot use case scenarios is reported.
Furthermore, the OGC SensorThings APl Data Model is presented in the context of
beAWARE. Last but not least, sensor data are mapped to the beAWARE ontology, including
time series data, geospatial coverages, images and video information.

Finally, we conclude our report by highlighting some remarks and lessons learnt from
current experiments, and we further identify future directions for the improvement of the
developed tools, in the context of beAWARE project.

Page 8

o
heAWARE D4.1-V1.0

2 ARCHITECTURE

The two sources of information which are considered in this document are social media and
sensor data, under Task 4.1 (Social media monitoring) and Task 4.2 (Monitoring machine
sourcing information from loT and M2M platforms), respectively. The position of the
modules concerning social media and sensor data in the beAWARE architecture are
illustrated in Figure 1. The modules are part of WP4 in beAWARE, which aggregates
emergency information for decision support, aiming to generate early warnings by
semantically fusing data from multiple sources, and to assist the Twitter report generation
on the PSAP visualisations.

Crisis Centre Staff First Responders m

[PSAP J [Mobile App] [Mobile App
/ l
(Backend J
L
Video Analysis
Image Analysis
Speech Recognition Data
Text Analysis & -
) Text Generation Analysm.' = Semantic Data
a SensorEvent Detection | FTOC€ssing
P Cisis Classification
o Models
@
o
o]
=
SensorThings HTTPR(S)
API FTP
New Data Non-Semantic Data
Notification
===
__J | social
1 Media
1| Crawling | (Data Wrappers)
Social media and sensor data ! .
collection : ! -
=t

Figure 1: The beAWARE system architecture

The social media monitoring module interacts with the text analysis module, via a message
bus. The text from the collected tweets is processed so as to extract high-level concepts and
to estimate locations. The output of the text analysis module is then sent to the KB in a JSON
format that is parsed for KB semantic integration.

In the following, section 3 describes the methods that deal with social media information
and section 4 the framework of beAWARE which are associated with the collection and
processing of sensor data.

Page 9

o
heAWARE D4.1-V1.0

3 SOCIAL MEDIA MONITORING

In this Section, we present the social media monitoring module and explicate how the
classification of tweets as relevant or not is accomplished. Firstly, the data collection process
is presented, based on the data requirements that have been identified by beAWARE user
partners. Secondly, the data representation that is followed in beAWARE is discussed, based
on the standard JSON format given by Twitter. Thirdly, the analysis on each tweet is done in
two levels; textual and visual modalities are involved in the machine learning process. The
module delivers only the classified-as-relevant tweets, as they are obtained by a multimodal
classification service, being part of the social media monitoring module.

3.1 Framework overview

The aim of the social media monitoring module is to collect posts from Twitter that appear
to be relevant to the three main pilots, i.e. floods, fire, and heatwave, in their respective
geographical locations. The crawling process needs to be real-time and effective, able to
handle large streams of data, especially when keywords such as “fire” have multiple
meanings and needs disambiguation. The module collects tweets in English, Greek, Italian
and Spanish, which are published by citizens, civil protection organizations, online news
websites or any other account, aiming to provide relevant information about crisis events.

The complete flow of beAWARE’s first version of the social media monitoring tool is

demonstrated in Figure 2.

English/Greek/Spanish/Italian Ll LI Send t ° %oud
Fire/Floods/Heatwave Feeds Collections serv1e =
9998 -

Is the tweet

Get keywords

relevant?

Twitter Streaming API

O

Client

track terms

credentials receives LlEedi Insert tweet to
tweets Spotlight corresponding database
detected
N t t
e\-N wee text concepts
{, 8Irives Update tweet
Get tweet in JSON format DOE? the tweet no Jaceard with concepts
& contain an image? Similarity & estimated

relevancy

Find the matching use case

no

yes Update tweet
with feature
SVM classification vector & Is the tweet yes
with estimated relevant?
DCNN features relevancy

Figure 2: Complete flow of the beAWARE framework

Page 10

o
heAWARE D4.1-V1.0

Before the insertion to the database, we determine whether the new tweet is relevant or
irrelevant to the pertinent use case (floods, fire or heatwave), so that only the relevant posts
are forwarded to the respective analysis components, where the extraction of pertinent
information (events, location, etc.) takes place. If an image was uploaded along with the
tweet, we use the URL of the media to extract visual features based and then feed them to a
pre-trained SVM classifier which returns a binary score, i.e. 1 for relevant and 0 for
irrelevant, as described in Section 3.6.1 . Please note that this classification is language-
independent, since only visual characteristics are taken into account. Then, the JSON object
containing all the information of the tweet is updated to include the visual features and the
estimated relevancy.

If the received tweet does not include an image or the SVM classifier returns that the
attached image is irrelevant, we use the actual text of the tweet in order to estimate the
relevancy, by comparing it with Twitter posts that were manually annotated. As described in
the following, a dedicated graphical interface has been developed for browsing the compiled
social media collections and annotating tweets as relevant/irrelevant. To enhance text
comparison, we utilize the DBpedia Spotlight® that identifies and links (i.e. disambiguates)
natural language mentions to respective DBpedia resources, e.g. given a tweet that
mentions “Heavy rain and flood threat in northern Italy”, the DBpedia concepts “Rain”,
“Flood”, and “Italy” will be extracted. Relevancy is estimated by performing Jaccard
Similarity? between extracted concepts of the received tweet and the pre-detected concepts
of every tweet of the targeted collection that was annotated as relevant. If there is an
adequate number of annotated tweets, namely more than 20, and the maximum calculated
similarity is larger than a constant “epsilon” (currently set at 0.3), the new tweet is
considered as relevant; elsewise as irrelevant. Afterwards, the JSON object is again updated
to include the extracted concepts and the estimated relevancy.

Finally, the updated JSON is inserted to the corresponding collection. In case that it has been
estimated as relevant, either from the SVM classifier or the Jaccard Similarity method, it is
pushed to the cloud service bus as a message that consists of the tweet’s unique
identification, the matching use case, and a timestamp. All subscribers can access the
marked Twitter post directly from the MongoDB database using the id provided in the
message.

! https://github.com/dbpedia-spotlight/dbpedia-spotlight

2 https:/len.wikipedia.org/wiki/Jaccard index

Page 11

https://github.com/dbpedia-spotlight/dbpedia-spotlight
https://en.wikipedia.org/wiki/Jaccard_index

o
heAWARE D4.1-V1.0

3.2 Data collection from Twitter

In order to gain access to Twitter’s global stream of data, we have exploited the Streaming
APIs®, a streaming client that receives tweets the moment that they are published.
Compared to Twitter’s REST APIs® , this option offers a real-time stream of tweets instead of
constantly making requests and thus overriding any rate limiting, i.e. maximum number of
requests. The only limitation when using the Streaming APIs is that each account is allowed
to create only one standing connection.

There are various streaming endpoints that can be divided into the following categories:
Public streams, User streams, and Site streams. In our case, the “POST statuses/filter”
endpoint of public streams is the most suitable, since it focuses on public data flowing
through Twitter that matches one or more filter predicates. Specifically, the “track” field can
be used to define up to 400 search keywords, combined with an OR operator, so that the API
will return tweets matching any of these keywords.

To consume Twitter’s Streaming API, we chose to adopt the Hosebird Client (hbc)®, an open-
source and easy-to-use Java HTTP client. A required parameter is the user account’s
credentials, while an optional parameter is the track keywords. For each combination of
pilot and language we sustain a separate collection in a MongoDB database to store the
crawled tweets. In addition, there is a “Feeds” collection where we define a set of relevant
keywords to serve as track terms during the crawling procedure.

After connection with the Streaming API is established, the client constantly receives newly
created tweets in JSON format. We choose to maintain the structure provided by the API,
since the JSON format fits well with a MongoDB database. Every time a new tweet is
retrieved, we examine which one of the track terms exists in the tweet’s text. In this way we
can match the tweet to the corresponding language and pilot (e.g. “inundacién” matches to
Spanish and floods), in order to insert it to the respective collection.

3.3 Data collection requirements

The main target of the social media monitoring framework is to collect in a real-time manner
any Twitter post that could be possibly reporting a crisis event. The crawling process is

% https://dev.twitter.com/streaming/overview

* https://dev.twitter.com/rest/public

® https://github.com/twitter/hbc

Page 12

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/rest/public
https://github.com/twitter/hbc

o
heAWARE D4.1-V1.0

achieved with Twitter’s Streaming API, which offers three alternative ways to filter what
data should be consumed:

1. Get statuses that contain any keyword of a predefined list

2. Get statuses from particular user accounts.

3. Get statuses that were posted in certain locations, specified by bounding boxes.
The first option fits our goal the most, since a set of keywords is a usual practice to detect
data that refer to specific use cases, and thus it was adopted in this framework. On the other
hand, the third option could serve in the future as an extension.

L Use case scenario
anguage Floods Fires Heatwave
English flooding forest_fires heatwave
AU PES TIUPKOYLA KoUoWVOg
TANUUUPES TtupKayLa KeAaiou
Greek GSCP_GR nupKayLe’q Beppokpacia_pekop
TIUPKOYLEG GSCP_GR
pyrosvestiki
GSCP_GR
alluvione fiamme ondatedicalore
alluvionevicenza vigilidelfuoco allertacaldo
allagamento piromane emergenzacaldo
bacchiglione pompieri altetemperature
fiumepiena troppocaldo
Italian allertameteo
sottopassoallagato
alluvione2017
allertameteovicenza
esondazione
livellofiume
fuertesprecipitaciones incendio oladecalor
gotafria llamasdefuego altastemperaturas
inundacién bomberos nochetropical
inundaciones focodeincendio golpedecalor
Spanish d.esbordamiento sequia
riada
riadas
lluviastorrenciales
tormentas
caudaldesbordado

Table 1: Search keywords per language and pilot

The initial set of keywords was composed of words suggested by the beAWARE user group
members, for the languages covered in beAWARE’s use cases, namely Greek, Italian, and
Spanish, and for English, as an additional control and demonstration language. However,

Page 13

o
heAWARE D4.1-V1.0

after using the proposed keywords in practice, it was noticed that some of them were
bringing a large number of irrelevant tweets, so they were ignored in the current
implementation that also involves the creation of a training set with balanced ratio between
relevant and irrelevant Twitter posts. The set of tested and ignored keywords are: allerta,
pioggia, maltempo, sottacqua, soccorso, Vicenza, protezionecivile, regioneveneto, piena,
veneto, and corte de carretera in the case of floods; incendio, forestali, fumo,
allertaincendio, fuego, humo, quema/quemas, conato, quemada/quemado, extincidn,
inhalaciéon de humo, intoxicacion de humo, evacuacién/confinamiento in the case of fires;
protezionecivile and hipertermia in the case of heatwave scenarios.

The complete list of keywords is shown in Table 1, separated by language and use case
scenario. It can be noticed that some of the listed keywords are aggregated words (e.g.
allertameteo), since (i) it is a common format in Twitter due to hashtags or the character
limit, and (ii) these words separately are expected to return more irrelevant than relevant
tweets.

After Twitter’s response, we store the collected data so as to be able to proceed with further
analysis on the collected content. The representation of the gathered tweets is presented in
the following section.

3.4 Data representation from Twitter content

After a connection is opened between our framework and the Twitter Streaming API, new
results are sent through this connection whenever a matched post is published. The received
tweets are encoded in JSON format, which is based on key-value pairs, with named
attributes and associated values. We prefer to keep this provided structure while storing the
tweets in our database, because JSON is indicated for MongoDB installations.

Figure 3 displays a screenshot of a tweet that is stored in Mongo, in a graphic representation
of the JSON format, and all fields can be seen together with their content and type.

Page 14

@
heAWARE

D4.1-V1.0

_id

" created_at

id

" id_str
U otext

TF

nuill

null

null

null

null

> (T3
4 L3

P |
s L3
null

TiF

display_text_range
zource
truncated
in_reply_to_status_id
in_reply_to_status_id_str
in_reply_to_user_id
in_reply_to_user_id_str
in_reply_to_screen_name
user
gec
| type
3 coordinates

i [D]

i [1]
coordinates
place
contributors
is_guote_status
extended_tweet
retweet_count
favorite_count
entities
favorited
retweeted
pessibly_sensitive

" filter_level

" lang

" timestamp_ms

" concepts

TiF

TAF

TAF

estimated_relevancy
relevant
is_retweeted_status

Objectld("5%188acacieddfe3adTfas")
Sat Aug 26 14:40:06 +0000 2017
G01454209962332160
G01454209962332160

Wivi Senigallia sulle indagini per I'alluvi...
[2 elerments]

<3 href="https://dlvrit.com/" rel="nof...
true

null

null

null

null

null

{ 37 fields }

{ 2 fields }

Point

[2 elerments]

437197926

13.2152224

{ 2 fields }

{ Gfields }

null

falze

{ 4fields }

0

0

{ 4fields }

false

falze

falze

low

it

1503758406521

Senigallia Alluvione

true

falze

false

Figure 3: Original and additional fields of a tweet in a tree view

Figures Figure 4 and Figure 5 display an expanded view of two important fields, i.e. media

and extended_tweet, which are described in the next paragraph.

Page 15

o
heAWARE D4.1-V1.0

4 |13 entities { 5 fields }
+ 3l haszhtags [0 elements]
3 urls [1 element]
» [yser_mentions [0 elements]
[l symbols [0 elements]
4 [media [1 element]
4 3 0] {11 fields }
#1 id 901454206317375489
“) id_str 901454206317375489
- [indices [2 elements |
" media_url http:/ phetwimg.com/media/DIKRO:T...
" media_url_h... https://phetwimg.com/media/DIKblk...
U ourl https://t.co/xtErmvcFuAC
" display_url pic.twitter.comstEmveFudC
" expanded_url https:/ftwitter.com,v_senigallia/status/...
| type photo
- lLH gjzes {4 fields }
" denn_feature 0.09386013 2.447605 1.4628002 1.800558 0...

Figure 4: Expanded view of field “entities”

4 L3 eytended_tweet { 4 fields }
U full_text Wivi Senigallia sulle indagini per I'alluvi...
- 3 display_text_range [2 elements]
113 entities { 5 fields }
4 13 extended_entities {1 field }
- [media [1 element]

Figure 5: Expanded view of field “extended_tweet”

As it can be seen in the above figures, plenty of information is offered for a single post, but
there are some fields that play a significant role in the social media monitoring procedure.
To begin with, id_str serves as a string identifier that can be used in different stages of the
beAWARE framework in order to refer to a certain tweet, e.g. when communicating with the
Text Analysis module. text is the main content of the Twitter post and it is used in text
classification (Section 3.6.2) to estimate the tweet’s relevancy, while
entities.media.media_url (periods should be interpreted as “has subfield”) refers to the link
of an attached image and it is used in image classification (Section 3.6.1), again for
relevancy estimation. created at is the date when the post was published and
geo.coordinates (if available) indicate the location where the tweet originated. Sometimes a
tweet might exceed the maximum character limit and then a field named extended_tweet is
included. In that case, subfields extended _tweet.full text and
extended_tweet.entities.media.media_url are used in text and image classification
respectively.

Page 16

o
heAWARE D4.1-V1.0

Apart from the aforementioned important fields, there are also some fields that are not
originally included in the JSON format of a consumed tweet, but are added later by our
framework, in the context of beAWARE project. In particular, the Boolean field
estimated_relevancy refers to the result of the multimodal classification, while the Boolean
field relevant to the human annotation (Section 3.5). In order to decrease the response time
of common queries to the database, is_retweeted status defines whether the Object field
retweeted_status exists or not. Finally, concepts are the extracted concepts during text
classification and entities.media.dcnn_feature is the image feature vector during image
classification. These are the fields that have been used so far to enrich the JSON structure of
a Twitter post, in order to assist the analysis by making the information flow more efficient.

Before we proceed with the analysis of the Twitter content and its classification as relevant
or not, we create an annotated set of tweets, having binary classification values, so as to
incorporate and avail of user feedback in the classification stage. The annotated set of
tweets is used as a training set, to train the models so as to be able to classify the incoming
streams of Twitter content. For the purposes of beAWARE we created an annotation tool, as
described below.

3.5 Data annotation and training set creation

The classification procedure, which is described in the following section, needs training data,
i.e. a set of labeled examples. So, it is necessary to have a large number of tweets that are
characterized as relevant/irrelevant. This is a manual task and thus requires human effort,
such as end users that will serve as annotators. To facilitate this effort, an online application
has been implemented, aiming to present the collected tweets in a straightforward manner
and to provide an easy way to annotate. In this section we present a detailed description of
the online annotation tool of beAWARE, which has been used to initialize the training set for
each language and pilot use case scenario considered. Our approach allows for regular
updates of the training set for further improvements of the developed classification models.

The homepage® of the web tool (Figure 6) offers the end users the ability to select the type
of Twitter posts that they would like to be displayed, based on two criteria: language, i.e.
English, Greek, Italian, and Spanish, and pilot case, i.e. fire, flood, and heatwave. Each
combination of language and pilot case defines a different collection of crawled tweets. In a
minimal, but efficient way the users are able to set their preferences; first, by a drop-down
list on the upper left corner of the website that provides all the available languages and then

® http://mklab-services.iti.qr/beAWARE tweets

Page 17

http://mklab-services.iti.gr/beAWARE_tweets

o
heAWARE D4.1-V1.0

by clicking one of the three pilot buttons in the middle of the page. This will navigate to the
presentation of the respective tweets.

O
N heAWARE

Please select a pilot

L
Fire Flood <O> Heat

Figure 6: Data annotation tool — homepage

Figure 7 depicts a set of tweets that are relative to floods and are written in Italian. As it can
be easily seen, the page consists of two main components: a pagination header that also
includes other useful utilities, and a panel of textboxes in vertical direction where each box

displays a Twitter post.

In order to avoid presenting thousands of tweets in a single page, the application gives a
pagination option that divides the posts into pages of fifty. Using the left and right arrows
inside the header, end users are able to navigate back and forth through pages, while the
page numbering and the total number of tweets are always shown. In addition, there are
two filtering options: posts can be filtered either by their date of creation, or by the
existence of certain keywords inside their text. For the former, a date slider serves to define
the time period during which posts were created and then pressing the reload button, which
lies next to the slider, is necessary to return the new results. For the latter, users can type an
unlimited number of words into a text input field on the upper right side of the header and
by clicking on the magnifier icon or pressing the Enter key, results will be updated with
tweets that contain at least one of the given words in their text. In order to switch use cases,
the “Change pilot” button navigates back to the homepage, while switching languages is
possible through the drop-down list that was previously described and is always visible in the
annotation tool. In addition to this header, a more compact version of it, which includes only
the pagination functionality, was added under the panel of tweets, according to feedback
from real end users.

Page 18

o
heAWARE D4.1-V1.0

Ii switch language (D
- heAWARE

back to pilots

| + Change pilot | Search here Q

pagination @@@ 101 - 150 of 14623 tweets [RIR Aot

in tweets
date slider o reload

: R |
1+ Cosa fare in caso di #alluvione o
#terremoto? Memorizza ora le bz
attached image informazioni pit utili qui »
hitps://t.co/RLccn3Gxlu #Prevenzione
#Pordenone @ProtCivReg_FVG — text
https://t.co/6IbSEOJMOB
user account, - 5 e SR N buttons to
e @ Pasthamrem Jcomu r T L
creation date, ——————e ;l(; 7”0;'?580 :”O”e AE, 20 N0V annotate
& link to Twitter o iomsdons ATAD S84 i
[T,
(: = R : Relevant v
#GFvip Ma Raffaello ha i pantaloni cosi corti in attesa di un ol
allagamento della casa o pensa all'acqua alta di Venezia? m_
@antoerik » Tue, 28 Nov 2017 00:07 « W I
estimated
tweets
: relevancy
Responsabilita del progettista: chi deve rispondere dei danni
conseguenti all'esondazione di un fiume? - BibLus-net
https://t.co/44vsXZMRx3
@PGentilucci » Mon, 27 Nov 2017 21:04 « ¥

Figure 7: Data annotation tool — tweets presentation and buttons to annotate

Regarding the crawled Twitter posts, they are represented by a list of boxes and they are
sorted from most recent to oldest. For each tweet, a variety of information is available. In
detail, the main text of the post, along with images or active links if existing, the username of
the author, which links to the user account’s Twitter page, the time and date when the
tweet was published, and a link to the original post in Twitter. Moreover, the colored border
around each tweet indicates its relevancy to the pilot case as estimated by the multimodal
classification framework (see Section 3.6) during the crawling phase. Green border refers to
relevant texts and red violet border to irrelevant.

Next to every tweet box there are two buttons that offer the core functionality of the
described application. By clicking the “Relevant” or the “Irrelevant” button, users are able to
annotate all posts and the annotation is instantly saved in the database where the crawled
tweets are stored, as an extra field (see Section 3.4). When a tweet is already annotated,

Page 19

o
heAWARE D4.1-V1.0

then the corresponding button is colored, but it can always be changed. However, the
relevancy of a post can only have one value, regardless of the annotator, so the latest
selection overwrites a previous choice.

In summary, the online annotation tool provides two basic functionalities; (i) a presentation
of all crawled Twitter posts per language and pilot, together with filter options (e.g. getting
tweets that were published in a specific date or that contain certain words), and (ii) a simple
way to select if a tweet is relevant or not, thus creating the training set. The tool has already
been used by Greek and Italian users, and since March 2017 more than 11,000 and 16,000
tweets respectively have been successfully annotated.

3.6 Social media multimodal classification

Classification is the problem of identifying to which of a set of categories (i.e. classes) a new
observation belongs to, on the basis of a training set of data containing observations whose
class membership is known. It is a two-step process that involves the construction of a
model by using a training set of the target category and then the application of the model
for classifying previously unseen data. The algorithm that implements classification is known
as a classifier, i.e. one function that maps one observation to a pre-defined class. Most
algorithms describe an individual instance whose category is to be predicted using a feature
vector that is comprised of measurable properties (i.e. features) of the instance. Features
may be binary; categorical; integer-valued; or real-valued. In case the instance is an image,
the feature values might correspond to the pixels of an image; if the instance is a piece of
text, the feature values might be occurrence frequencies of different words.

In beAWARE project, the first version of the social media monitoring module considers both
visual and textual information, aiming to filter-out irrelevant social media posts. The
relevance is estimated using both textual and visual (if available) information.

In the sequel, we present an overview of the relevant work on visual and textual
classification as well the framework applied for both cases, then an evaluation section
follows which includes a short description of the datasets used, the experiments realized,
the results produced and finally the conclusions drawn.

3.6.1 Social media image classification

Image classification involves the use of visual concept detection algorithms based on low-
level features and classifiers for deciding whether an image shows evidence of flood, fire or
heatwave. In this section, we present an overview of state of the art methods for concept
detection in images, and then we present the framework proposed within beAWARE.

Page 20

o
heAWARE D4.1-V1.0

Concept detection in images aims at annotating them with one or more semantic concepts
(e.g. hand, sky) that are chosen from a pre-defined concept pool. Concept detection systems
involve the extraction of visual features, the training of classifiers for each concept using a
ground-truth annotated training set, and eventually, the application of the trained classifiers
to unlabeled images, that return a set of confidence scores for the appearance of the
different concepts in the shot. Thus, the first step is feature extraction and the second is the
building of the classification model.

Regarding feature extraction, it refers to the methods that aim at the description of the
visual content of images. Visual descriptors can be divided in two main groups: hand-crafted
and DCNN-based descriptors. Hand-crafted features can be further divided into global and
local descriptors. Global descriptors capture global characteristics of the image and some
indicative examples of global descriptors are the MPEG-7 descriptors, and the Grid Color
Moments. Instead, local descriptors represent local salient points or regions and the most
widely used are the SIFT descriptor (Lowe, 2004), and the SURF descriptor (Bay et al., 2008)
and their variations. Usually, in the case of local descriptors a clustering algorithm is applied
after the feature extraction in order to form a vocabulary of “visual words” that leads
eventually to a global descriptor. The most known approaches for visual word assignment
are the “bag-of-word” (BoW) representation (Qiu, 2002), the Fisher vector (Perronnin et al.,
2010) and the VLAD (Jegou et al., 2010). As far as the DCNN-based features are concerned,
they are the most recent trend in feature extraction and image representation and they
seem to outperform the hand-crafted features in most applications. They learn features
directly from the raw image pixels using Deep Convolutional Neural Networks (DCNNs),
which consist of many layers of feature extractors and can be used both as standalone
classifiers, i.e., unlabeled images are passed through a pre-trained DCNN that performs the
final class label prediction directly, or as generators of image features, i.e., the output of a
hidden layer of the pre-trained DCNN is used as a global image representation (Simonyan,
2014; Markatopoulou, 2015). The latter type of features is referred to as DCNN-based and
they are usually preferred due to their high performance both in terms of time and accuracy.
Several DCNN software libraries are available, e.g., Caffe (Jia, 2014), MatConvNet (Vedaldi,
2015), and different DCNN architectures have been proposed, e.g., CaffeNet (Krizhevsky,
2012), GooglLeNet (Szegedy, 2015).

Classification step is the second step of the multimedia concept detection process, and it
involves the construction of models by using the low-level visual features, and then the
application of these models for image labelling. Common classifiers that are used for
learning the associations between the image representations and concept labels are the
Support Vector Machines (SVM) and Logistic Regression (Markatopoulou, 2015). SVMs are
trained separately for each concept, on ground-truth annotated corpora, and when a new

Page 21

o
heAWARE D4.1-V1.0

unlabeled video shot arrives, the trained concept detectors will return confidence scores
that show the belief of each detector that the corresponding concept appears in the shot.

beAWARE framework

In the employed framework, we trained a 22-layer GooglLeNet network (Szegedy, 2015) on
5055 ImageNet concepts (Pittaras, 2017), which are a subset of the 12,988 ImageNet
concepts. The subset of the 5055 concepts was produced by considering the tree structure
of the ImageNet and the following assumptions: a) concepts that were very similar were
merged, for example all different dog breeds (e.g. Shih-Tzu, Pekinese, Maltese dog) were
removed and only the concept dog was kept. The same philosophy was followed for other
animals and plants as well, b) concepts that correspond to scientific terms were removed,
for example biological terms such as eukaryote, prokaryote, sporozoite etc., and c) concepts
with very few number of positive images were removed. Then, this network was applied on
the TRECVID SIN 2013 development dataset and we used as a feature (i.e., a global image
representation) the output of the last pooling layer with dimension 1024. In the sequel, we
used the annotated dataset for training and validating an SVM classifier per concept (i.e.
flood, heatwave, fire). It should be noted that the SVM classifiers were tuned by setting
different t and g values in order to achieve maximum performance. t parameter in SVM
classifier defines the kernel type, while g stands for the gamma in the kernel function. It
should be noted that apart from the DCNN-based features, several other features were
evaluated as well, including acc, gabor.

The beAWARE image classification module is evaluated in two data collections, which
involve visual and textual information, in Section 3.6.3 below, after the discussion on the
state of the art in text classification in Section 3.6.2 .

3.6.2 Social media text classification

Social media text classification involves the use of text classifiers that consider textual
features for deciding whether an image show evidence of flood, fire or heatwave. In this
section, we present an overview of state of the art methods for text classification, then we
present the framework proposed as well as some directions for the following version of the
beAWARE social media text classification module.

Text classification is the assignment of natural language texts into one or more categories/
classes drawn from a predefined set according to their content. Text classification involves

the following series of steps:

1. Document collection, which involves the collection of data stored in several formats such

as doc, html.

Page 22

o
heAWARE D4.1-V1.0

2. Preprocessing, which converts the original text data in a data-mining-ready structure,
where the most significant text-features that serve to differentiate between text-
categories are identified. Commonly, the steps involved are tokenization, where each
document is partitioned into a list of tokens, stop word removal, that involves of removal
of frequently occurring words (e.g. and, the), and word stemming, which reduces words
to their root form.

3. Text representation (Yan, 2009), which models documents and transforms them into
numeric vectors. The most commonly used text representation model is the Vector
Space Model (VSM) where documents are represented by vectors of words. One of the
commonly used VSM is the Bag of Words model (BOW) which uses all words appeared in
the given document set Das the index of the document vectors. Different term
weighting schemas were proposed under the BOW model that gives different text
representation results. The simplest case of BOW is the Boolean model, where binary
vectors represent documents. Extensions of the Boolean model is the Term Frequency
model (TF) that uses the frequency of the terms, and the Term Frequency Inversed
Document Frequency (TFIDF) model, which uses real values that capture the term
distribution among documents to weight terms in each document vector. However, both
TF and the TFIDF model have certain limitations such as the fact that they cannot capture
polysemy and synonymity as well as the semantics of the documents. Later, more
advanced text representation strategies have been proposed including the N-gram
statistical language models that were proposed to capture the term correlation within
document. However, the exponentially increasing data dimension with the increase
of N limits the application of N-gram models. The Latent Semantic Indexing (LSI) was
proposed to reduce the polysemy and synonym problems. One of the latest approaches
that seems to outperform the other methods in many cases, is word2vec. Specifically,
Mikolov et al. (2013) proposed novel architectures and models for producing word
embeddings (i.e. representation of words from a given vocabulary as vectors in a low-
dimensional space), based on deep neural networks (NN), namely the Continuous Bag-
of-Words (CBOW) and the Skip-gram models, which are also referred as word2vec.
CBOW and Skip-gram models are trained first on a large corpus, taking into consideration
the neighbouring words in a sentence. The context size one can take into consideration is
specified by a parameter called window size. In the CBOW architecture, the NN model
tries to predict a word given the context of this word, whereas in the Skip-gram
architecture, the exactly opposite function is executed, that is, given a word the NN
model tries to predict the context of a word. Regarding the quality of these vectors, it is
proved that these methods can capture very efficiently the semantics of the words.

4. Feature selection methods (Aggarwal, 2012; Chandrashekar, 2014), that are used for
reducing the dimensionality of the dataset by removing features that are considered

Page 23

o
heAWARE D4.1-V1.0

irrelevant for the classification. The aim of these methods is to select a subset of
variables from the input which can efficiently describe the input data while reducing
effects from noise or irrelevant variables and still provide good prediction results.
Feature selection techniques can be classified into two basic categories: filtering
techniques and wrapper techniques. Filter methods act as preprocessing to rank the
features wherein the highly ranked features are selected and applied to a predictor. In
wrapper methods the feature selection criterion is the performance of the predictor i.e.
the predictor is wrapped on a search algorithm which will find a subset which gives the
highest predictor performance. In general, wrapper methods have low complexity,
whereas wrapper methods have higher time complexity and accuracy than filter
methods. Some filtering methods are the Document Frequency (DF), Information Gain
(1G), and Mutual Information (MI). Some wrapper methods are Sequential Forward
Selection (SFS), Sequential Backward Selection (SBS) and Neural Networks.

5. Classification Algorithms, which are used to model classes and label text. There are
several methods used to classify text such as Support Vector Machine, Naive Bayes
Classifier and Decision Trees.

The aforementioned text classification methods are applied to documents of normal length.

However, unlike normal documents, short texts that are available in many application areas,

such as Instant Messages, online Chat Logs, Bulletin Board System Titles, and Twitter are

usually noisier, less topic-focused, and (way more) shorter, that is, they consist of from a

dozen words to a few sentences, and finally they contain many non-standard terms. Because

of the short length, they do not provide enough word co-occurrence or shared context for a

good similarity measure (Song, 2014). Therefore, traditional machine learning methods, such

as SVM, Bayes and K-NN, which rely on the word frequency, tend not to perform as good.

Thus, new classifying methods on short text started to appear, such as sematic analysis,

semi-supervised short text classification, ensemble models for short text, and real-time

classification in order to deal with the problem of short text classification. Popular
methodologies (Song, 2014) used for short text classification include short text classification
using sematic analysis, semi-supervised short text classification, ensemble short text
classification, and real-time classification. Due to the extensive use and increase of
popularity of Twitter, a number of methods have been proposed that focus on tweet
classification (Selvaperumal, 2014). Some ideas that were proposed for tweet classification
are the following: the use of emoticons, the use of a network algorithm that classifies tweets
based on finding the similar trend topics, the application of data compression, the use of
tweet features like URL’s, the retweeted tweets and the influential users tweet, the use of
Wikipedia and wordnet to cluster short texts and others methods.

Page 24

o
heAWARE D4.1-V1.0

Apart from the (short) text classification approaches discussed above, it is possible to
conclude whether a document belongs to a specific class by calculating its similarity with the
instances (e.g. tweets) that belong to the class. There are a number of string similarity
measures that estimate the similarity between two sequences of strings. The most popular
term-based distance measures are the following: Block distance which is known as
Manhattan distance, the cosine similarity, the Dice’s coefficient, the Euclidean distance, the
Jaccard Similarity, the Overlap coefficient and the Matching coefficient (Vijaymeena, 2016).
The maximum of the similarity or minimum distance calculated between the query
document and the set of documents belonging to the class of interest is compared to a
threshold value that is defined empirically in order to decide whether the query document
belongs or not to the specific class.

beAWARE framework

In the employed framework, we evaluated several methods belonging to the traditional text
classification, as well as the Jaccard similarity method. Thus, for the traditional text
classification we approach each of the aforementioned steps as follows:

1. We collect short text messages from Twitter, as already described in Section 3.2.
2. We pre-process the collected text in the following ways:

a) We apply DBpedia Spotlight in order to automatically annotate it with respective
DBpedia resources (Daiber, 2013). It should be noted that DBpedia resources have
underlying semantics, however currently they are treated as plain words. It is
possible that we consider this information in next version of the module.

b) We remove punctuation and all non-characters, as well as stop words from the
collected text and finally we do word stemming.

3. As far as text representation is concerned, we tested Term Frequency (TF), TFIDF and
word2vec. Various experiments were realized for different feature length and n-gram
values (i.e. n-gram = 1 or 2) for the first two representation methods, and different
corpus and vector dimensions for the third method.

4. We do not apply feature selection in the current version of the text classification
module.

5. We serve each text feature vector as input to a classifier (i.e. SVM, Naive Bayes or
Random Forests) which is tuned in order to achieve maximum performance. The textual
feature vector is constructed using either DBpedia concepts or raw text, so as to
examine which is the most suitable representation in the context of beAWARE.

Page 25

o
heAWARE D4.1-V1.0

Regarding the Jaccard similarity approach, we follow the same collection (step 1) and
preprocessing (step 2) steps as the ones realized in the traditional text classification method.
However, in the sequel we compute for each text representation (i.e. DBpedia concepts, text
with stop words removed, and text with stop words removed and with word stemming) the
Jaccard similarity coefficient between the new text description and each positively

W, OW,
annotated text description, using the mathematical formula J(W,, W,) = M,
WqU Wy, |

where
W, stands for the set of terms of the new text description, and W;_ for the set of terms of
the n text description of the positively annotated dataset tests. Then the maximum value of
the Jaccard similarity coefficients was compared to a threshold defined empirically in order
to determine whether the new text description will be considered as positive or not.
Specifically, if the similarity was greater than the selected threshold the new instance was

considered as positive.

Finally, we should note that although the text used in beAWARE is retrieved from Twitter, in
the current, baseline version of the text classification, we used traditional methods followed
for normal length documents. However, it is expected that in the next versions, methods
that consider the particular characteristics of tweets will be evaluated.

3.6.3 Evaluation

In this section we evaluate the frameworks proposed in two different datasets. Thus, we
initially present the datasets and then present the experimental results for various features
and classifiers applied. It should be noted that both textual and visual classification modules
were developed and tested for the flood concept and similar behaviour is expected in the
other two use cases of fire and heatwave events.

Dataset Description

The datasets, which were used for developing and evaluating both the visual and textual
classification modules, are:

e the MediaEval 2017 dataset for the Multimedia Satellite Task’

e the beAWARE dataset
Regarding the MediaEval 2017 dataset, it was provided within the context of the Disaster
Image Retrieval from Social Media (DIRSM) subtask which goal was to identify all images
which show direct evidence of a flooding event from social media streams, independently of
a particular event. It should be noted that within the context of DIRSM subtask a set of visual

" https://multimediaeval.github.io/2017-Multimedia-Satellite-Task/

Page 26

https://multimediaeval.github.io/2017-Multimedia-Satellite-Task/

o
heAWARE D4.1-V1.0

descriptors were also precomputed and provided to the contesters which were acc, gabor,
fcth, jcd, cedd, eh, sc, cl, and tamura. These descriptors were evaluated during the building
of the visual classifier. The dataset comprises of 5,280 images, 1,920 of which are annotated
as true and 3,360 as false regarding the flood event. For evaluation purposes the dataset
was split into two subsets; a training and a validation set that contained 3,520 and 1,760
images respectively. Table 2 contains the statistics of the MediaEval dataset.

Regarding the beAWARE dataset, it is constructed from the tweets retrieved by the social
media crawling module (section 3.3). Since the focus in the first version of the social media
classification module is on the flood concept, the beAWARE dataset used contains tweets in
Italian that are related to the flood event. Thus, a significant effort was realised on behalf of
the Italian partners of the beAWARE and a considerable number of tweets were annotated
to aid in the classifier development. Specifically, 11,931 tweets were annotated, 5,171 of
which are annotated as true and 6,760 as false regarding the flood event. Table 3 contains
the statistics of the beAWARE dataset. However, it should be noted that the annotation
realised by the beAWARE partners refers both to the text and image (if available) of the
tweet and thus, it is often that while a tweet is relevant to flood event, the image included to
be irrelevant, which affects eventually the evaluation metrics.

Annotation for concept ‘flood’
True False Sum
Train set 1,280 2,240 3,520
Validation set 640 1,120 1,760
Total Records 1,920 3,360 5,280

Table 2: Statistics of MediaEval 2017 dataset

Annotation for concept
‘flood’
True False Sum
All 5,171 6,760 | 11,931
Only Text 4,261 5,989 | 10,250
Only Text (duplicates removed) 4,204 5,859 | 10,063
Text + Image 910 771 1,681
Text + Image (Image exists) 855 739 | 1,594

Table 3: Statistics of beAWARE dataset

Experiments

In order to evaluate the quality of the classification system the metrics that used in mostly
are precision, recall, and fscore. These metrics are calculated in every run in order to decide
the best performing classification method.

Page 27

o
heAWARE D4.1-V1.0

Social media image classification

In order to find the best performing feature and classifier for identifying images that contain
evidence of flood, several features were tested and the parameters of SVM classifiers were
tuned in order to maximise their performance. Specifically, as far as the MediaEval dataset is
concerned, the following features were tested acc, gabor, fcth, jcd, cedd, eh, sc, cl, and
tamura that were provided for the Multimedia-Satellite challenge and the DCNN-based
features. Moreover, SVM classifiers were trained for all of these features for different t and
g parameters and results showed that the proposed DCNN feature outperformed most of
them significantly. Table 4 contains the evaluation metrics for the MediaEval dataset for the
different visual descriptors and SVM classifiers. After inspecting Table 4, we can deduce that
the best results are obtained for the DCNN-based features for t = 1 (polynomial function)
and g=0.5or g=0,03125.

SVM
Parameters

Descriptor t g Precision | Recall | Accuracy | Fscore
acc 1 | 0,00125 | 0,5827 |0,3359 | 0,6710 0,4262
acc 1| 0,03125 | 0,5359 | 0,1516 | 0,6438 0,2363
acc 1 0,5 0,4830 | 0,1328 | 0,6330 0,2083
acc 2 0,5 0,6739 | 0,0484 | 0,6455 0,0904
cedd 1| 0,00125 | 0,6427 | 0,5453 | 0,7244 0,5900
cedd 1 |0,03125 | 0,6085 |0,5391| 0,7063 0,5717
cedd 1 0,5 0,5925 | 0,3953 | 0,6813 0,4742
cedd 2 0,5 0,8250 | 0,0516 | 0,6511 0,0971
cl 1| 0,00125 | 0,6005 | 0,3500 | 0,6790 0,4423
cl 1| 0,03125 | 0,6115 | 0,3641 | 0,6847 0,4564
cl 1 0,5 0,5957 | 0,3016 | 0,6716 0,4004
cl 2 0,5 0,6600 | 0,5156 | 0,7273 0,5789
eh 1| 0,00125 | 0,6935 |0,4703 | 0,7318 0,5605
eh 1| 0,03125 | 0,6682 | 0,4688 | 0,7222 0,5510
eh 1 0,5 0,6605 | 0,4469 | 0,7153 0,5331
eh 2 0,5 0,2500 | 0,0031 | 0,6341 0,0062
fcth 1 | 0,00125 | 0,6146 | 0,4609 | 0,6989 0,5268
fcth 1 |0,03125 | 0,5956 | 0,4625| 0,6903 0,5207
fcth 1 0,5 0,5000 | 0,2578 | 0,6364 0,3402
fcth 2 0,5 NaN 0,0000 | 0,6364 0,0000
gabor 1 | 0,00125 NaN 0,0000 | 0,6364 0,0000
gabor 1 | 0,03125 NaN 0,0000 | 0,6364 0,0000
gabor 1 0,5 NaN 0,0000 | 0,6364 0,0000
gabor 2 0,5 NaN 0,0000 | 0,6364 0,0000
jed 1 | 0,00125 | 0,6465 |0,5516 | 0,7273 0,5953
jcd 1| 0,03125 | 0,6388 |0,5250 | 0,7193 0,5763

Page 28

o
heAWARE D4.1-V1.0

jed 1 0,5 0,6025 | 0,3719 | 0,6824 0,4599
jed 2 0,5 NaN 0,0000 | 0,6364 0,0000
e 1| 0,00125 | 0,2381 | 0,0078 | 0,6301 0,0151
e 1| 0,03125 | 1,0000 |0,0016 | 0,6369 0,0031
sc 1 0,5 0,2500 | 0,0016 | 0,6352 0,0031
sc 2 0,5 0,3900 | 0,0609 | 0,6239 0,1054
tamura 1| 0,00125 | 0,2500 | 0,0031 | 0,6341 0,0062
tamura 1| 0,03125 | 0,5246 | 0,0500 | 0,6381 0,0913
tamura 1 0,5 0,3913 | 0,0141 | 0,6335 0,0271
tamura 2 0,5 0,5455 | 0,0094 | 0,6369 0,0184
dcnn-based 1| 0,00125 | 0,8192 | 0,8000 | 0,8631 0,8095
dcnn-based 1| 0,03125 | 0,8195 | 0,8016 | 0,8636 0,8104
dcnn-based 1 0,5 0,8195 | 0,8016 | 0,8636 0,8104
dcnn-based 2 0,5 0,9000 | 0,0141 | 0,6409 0,0277

Table 4: Evaluation of visual features and classifiers in MediaEval dataset

As far as the beAWARE dataset is concerned, we tested the DCNN-based feature and the
SVM classifier with t = 1 and g = 0.5 that performed best in the MediaEval dataset and the
evaluation metrics can be found in Table 5. However, it is evident that the recall achieved by
applying the visual classification method in the beAWARE dataset is rather low, which leads
to a low F-score as well. In order to discover, the reasons behind such low recall, a more
detailed annotation of the images of beAWARE dataset is required. This will reveal whether
the low performance is actually false or it is accurate and the visual classifier will need
retraining by considering also images of the beAWARE dataset.

SVM

Descriptor Parameters
t g Precision | Recall | Accuracy Fscore
dcnn-based | 1 0,5 0,7139 | 0,2738 0,5461 0,3957

Table 5: Evaluation of visual features and classifiers in beAWARE dataset

Social media text classification

The first method evaluated for text classification uses the Jaccard Similarity Coefficient.
Figures Figure 8: Evaluation of Jaccard Similarity method for MediaEval dataset

and Figure 9: Evaluation of Jaccard Similarity method for beAWARE dataset

depict the F-score values for the MediaEval and beAWARE datasets accordingly for different
text input and different values of the e parameter.

Page 29

o
heAWARE D4.1-V1.0

Jaccard Similarity for MediaEval DB
=9 Text without stop words == Text without stopwords + with stemming
DBPedia concepts
1,2000
1,0000 -
0,8000 - -
(4]
S
S 0,6000
(7]
('8
0,4000
0,2000
0,0000 T T : T : T -_,‘_l
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
e parameter
Figure 8: Evaluation of Jaccard Similarity method for MediaEval dataset
Jaccard Similarity for beAWARE
=¢—Text without stop words == Text without stopwords + with stemming
DBPedia concepts
1,2000
1,0000 n
0,8000
()
S
9 0,6000
(7]
('8
0,4000 S
0,2000
0,0000 T T T T T T T T 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
e parameter

Figure 9: Evaluation of Jaccard Similarity method for beAWARE dataset

After a careful observation of the two figures, we can conclude that for the Jaccard method
the use of DBpedia concepts slightly improves the classification performance. However, it
should be noted that especially for the MediaEval dataset the Jaccard method is performing

satisfactorily.

Page 30

o
heAWARE D4.1-V1.0

Moreover, it is evident that the method has good results for very low values of the e
parameter, i.e. around 0.1 and drops significantly after that value. The main disadvantage of
the Jaccard method is that it is rather slow compared to the other methods, given that the
new text must be compared against all positively annotated texts in order to determine its
relevancy with them. However, since the text classification method is part of the social
media monitoring pipeline that is triggered very regularly (usually around 1 second), it is not
considered an optimal solution.

In the sequel, the methods using classifiers are evaluated. In all cases three classifiers are
tested for a set of parameters, which can be found in Table 6. For the remaining parameters,
default values are used. Moreover, regarding the methods using TF and TFIDF
representation different n-gram values and min_df values are considered during text
vectorization. The min_df value affects the size of the feature length since it ignore terms
that have a document frequency strictly lower than the given threshold when building the
vocabulary. Specifically, n-gram parameter can be either 1 or 2, while min_df can be 0.0001,
0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01 or 0.02.

Classifiers Parameters

Penalty parameter: 0.01, 0.1, 1.0, 2.0, 3.0, 4.0, 5.0

Kernel type: rbf, poly

Naive Bayes Additive smoothing parameter: 0.01, 0.1, 1.0

Number of trees in the forest: 10, 50, 100, 200, 500, 1000

Number of features used for best split: auto, log2, sqrt, None
Table 6. Classifier parameters

SVM

Random Forests

Table 7 and Table 8 contain the best results of the TF representation method for each
different classifier for different text inputs for the datasets MediaEval and beAWARE

correspondingly.

n-gram | Text input Classifier Precision Recall F-score
1 | Without stop words SVM 0,85938 | 0,83125 | 0,78740
Naive Bayes 0,71406 0,82500 0,74795

Random Forest 0,90000 0,84886 0,81241

Without stop words & with SVM 0,48438 | 0,75057 | 0,58546
stemming Naive Bayes 0,60313 | 0,79659 | 0,68319
Random Forest 0,76563 0,82727 0,76324

DBPedia concepts SVM 0,35781 | 0,70000 | 0,46450
Naive Bayes 0,50156 | 0,75000 | 0,59335

Random Forest 0,66250 0,75852 0,66614

2 | Without stop words SVM 0,84688 | 0,82614 | 0,77986
Naive Bayes 0,74844 | 0,83011 | 0,76213

Random Forest 0,89531 0,85227 0,81508

Page 31

o
heAWARE D4.1-V1.0

Without stop words & with SVM 0,45156 | 0,74432 | 0,56226
stemming Naive Bayes 0,61094 | 0,79602 | 0,68536
Random Forest 0,75156 0,82727 0,75987
DBPedia concepts SVM 0,36406 0,70170 0,47023
Naive Bayes 0,50156 | 0,75114 | 0,59444
Random Forest 0,65625 0,76136 0,66667

Table 7. Evaluation of TF representation method for MediaEval dataset.
n-gram | Text input Classifier Precision Recall F-score
1 | Without stop words SVM 0,86066 0,23299 | 0,36671
Naive Bayes 0,84712 0,47337 | 0,60735
Random Forest 0,81124 0,53402 0,64407
Without stop words & with SVM 0,87413 0,18491 | 0,30525
stemming Naive Bayes 0,84851 0,45155 0,58943
Random Forest 0,81081 0,54364 0,65087
DBPedia concepts SVM 0,91449 0,19379 0,31980
Naive Bayes 0,83220 0,36132 0,50387
Random Forest 0,77309 0,46117 0,57772
2 | Without stop words SVM 0,85795 0,22559 | 0,35725
Naive Bayes 0,85014 0,44896 | 0,58761
Random Forest 0,82090 0,52885 0,64327
Without stop words & with SVM 0,87701 0,18195 0,30138
stemming Naive Bayes 0,85514 0,42788 | 0,57037
Random Forest 0,82659 0,50592 0,62767
DBPedia concepts SVM 0,91956 0,18602 0,30944
Naive Bayes 0,83795 0,35762 0,50130
Random Forest 0,74461 0,47226 0,57796

Table 8. Evaluation of TF representation method for beAWARE dataset

The same applies to Tables Table 9 and Table 10 which contain the best results of the TFIDF
representation method.

n-gram | Text input Classifier Precision Recall F-score
1 | Without stop words SVM 0,71120 | 0,82344 | 0,76322
Naive Bayes 0,76311 0,65938 0,70746

Random Forest 0,73359 0,89063 0,80452

Without stop words & with SVM 0,69727 | 0,43906 | 0,53883
stemming Naive Bayes 0,77186 | 0,56563 | 0,65284
Random Forest 0,76973 0,74688 0,75813

DBPedia concepts SVM 0,66462 | 0,33750 | 0,44767
Naive Bayes 0,69752 | 0,48281 | 0,57064

Random Forest 0,69581 0,59688 0,64256

2 | Without stop words SVM 0,70572 | 0,80938 | 0,75400
Naive Bayes 0,76056 0,67500 0,71523

Page 32

@
heAWARE

D4.1-V1.0
Random Forest 0,74443 | 0,88750 | 0,80969
Without stop words & with SVM 0,69825 | 0,43750 | 0,53794
stemming Naive Bayes 0,77419 | 0,56250 | 0,65158
Random Forest 0,76056 0,75938 0,75997
DBPedia concepts SVM 0,66875 | 0,33438 | 0,44583
Naive Bayes 0,70000 | 0,48125 | 0,57037
Random Forest 0,66831 0,63594 0,65172

Table 9. Evaluation of TFIDF re

presentation method for Media

Eval dataset.

n-gram | Text input Classifier Precision Recall F-score
1 | Without stop words SVM 0,24186 | 0,60738 | 0,37727
Naive Bayes 0,50444 | 0,70267 | 0,62526

Random Forest 0,52071 0,70940 0,63797

Without stop words & with SVM 0,20488 | 0,59356 | 0,33144
stemming Naive Bayes 0,48521 | 0,69613 | 0,61094
Random Forest 0,52256 0,71086 0,63995

DBPedia concepts SVM 0,20118 | 0,60129 | 0,32910
Naive Bayes 0,32988 0,64552 0,47497

Random Forest 0,71006 0,59608 0,63085

2 | Without stop words SVM 0,23151 | 0,60556 | 0,36597
Naive Bayes 0,48558 0,70104 0,61499

Random Forest 0,55806 0,71395 0,65737

Without stop words & with SVM 0,19970 | 0,59102 | 0,32442
stemming Naive Bayes 0,46043 | 0,69194 | 0,59512
Random Forest 0,54882 0,71158 0,65173

DBPedia concepts SVM 0,17825 0,59285 0,29854
Naive Bayes 0,37426 | 0,65504 | 0,51331

Random Forest 0,70932 0,59572 0,63040

Table 10. Evaluation of TFIDF representation method for beAWARE dataset.

Regarding the word2vec methodology several runs were realised for different vector
dimension (i.e. 100, 200, 300, 400, 500), words window (i.e. 2, 3) and training algorithm (i.e.
| 0, 1) parameters. Tables Table 11 and Table 12 contain the best results of the word2vec
method for the MediaEval and beAWARE datasets correspondingly. For all cases, the
highlighted rows are the ones with the best results for each table. The sizes of the of the
corpara used are 6,600 records for the mediaEvalEnglishFloods_corpus, around 830,000

records

for the

beAwareEnglishFloods_corpus

and

15,000

for

the

beAwareltalianFloods_corpus. It is evident that for the case of the MediaEval dataset where
two different corpus are used, the bigger corpus with around 830,000 records achieves
better performance.

Vector Words Training P.r ?
. . . . cisi | Recall | Fscore
. dimension | windows | algorithm
Text input Corpus on
text with mediaEvalEnglishFl 100 3 1 0,75 | 0,745 | 0,751

Page 33

o
heAWARE D4.1-V1.0

stop words oods_corpus 835 31 77
removed

text with

stop words beAwareEnglishFlo 200 3 0 0,79 | 0,828 | 0,810
removed ods_corpus 341 13 40
text with

stop words

removed + 100 3 1

stemming mediaEvalEnglishFl 0,76 | 0,714 | 0,737
applied oods_corpus 167 06 10
text with

stop words

removed + 200 3 0

stemming beAwareEnglishFlo 0,77 | 0,825 | 0,800
applied ods_corpus 647 00 00
DBPedia mediaEvalEnglishFl 100) 1 0,75 | 0,778 | 0,766
concepts oods_corpus 455 13 15
DBPedia beAwareEnglishFlo 0,86 | 0,020 | 0,039
concepts ods_corpus [100 = 500] [2,3] [01] 667 31 69

Table 11. Evaluation of word2vec representation method for MediaEval dataset.

Text input Corpus 'Vecto'r \{Vords Tralr.ung Precision | Recall Fscore
dimension | windows | algorithm

text with

stop words beAwareltalian

removed Floods_corpus 100 3 1 0,95855 | 0,06842 | 0,12772
text with

stop words

removed +

stemming beAwareltalian

applied Floods_corpus | [100—500] [2,3] [0,1] nan 0,00000 | 0,00000
DBPedia beAwareltalian

concepts Floods_corpus | [100—500] [2,3] [0,1] nan 0,00000 | 0,00000

Table 12. Evaluation of word2vec representation method for beAWARE dataset.

The best runs from all tables along with information concerning the text representation
parameters and the classifier parameters can be found in Table 13. After a careful
observation, we can deduce that for the MediaEval dataset the best performing method is
the TF method while for the beAWARE is the TFIDF method. The performance of the two
methods is comparable within the same dataset, since for the beAWARE dataset the Fscore
of TF method is 0,65 and the Fscore of the TFIDF method is 0,657 while for the MediaEval
dataset the Fscore of TF method is 0,815 and the Fscore of the TFIDF method is 0,809.
However, we observe a significant difference in the Fscore between the two datasets. This is
most probably due to the special characteristics of the Twitter text such as the limited
length, the use of non-standard terms and possible grammatical errors which require more
advanced processing and representation techniques. However, for the current version of the

Page 34

@
heAWARE

D4.1-V1.0

system and given that the dataset of interest is the beAWARE, we will proceed with using
the TFIDF method for the text classification module, as the best performing examined
approach. Finally, as far as the word2vec method is concerned, while it works satisfactory for
the MediaEval dataset, it fails in the beAWARE dataset. A possible explanation for such low
performance is a low quality of the corpus used for the word2vec representation as well a
rather small size that does not cannot produce a good vector space. Thus, the use of a larger

corpus of around 100,000 records will be examined in the next version.

Classifiers & Classifier
Method | Dataset Text Input Parameters parameters Precision Recall Fscore
Random Forest
text with stop {Features num for
words removed | n-gram=1 best split: auto
+ stemming min_df = 0,001 Number of trees:
TF beAWARE | applied features length = 1313 | 1000} 0,81081 | 0,54364 | 0,65087
Random Forest
n-gram = 2 { Features num for
text with stop min_df = 0,003 best split: auto
TF MediaEval | words removed | features length = 1068 | Number of trees: 200} 0,74804 | 0,89531 | 0,81508
Random Forests
n-gram = 2 { Features num for
text with stop min_df = 0,001 best split: auto
TFIDF beAWARE | words removed | features length =2762 | Number of trees: 200} 0,79968 | 0,55806 | 0,65737
Random Forest
n-gram = 2 { Features num for
text with stop min_df = 0,003 best split: auto
TFIDF MediaEval | words removed | features length = 1068 | Number of trees: 500} | 0,74443 | 0,88750 | 0,80969
corpus =
beAwareltalianFloods
_corpus
vector dimension = SVM
100 {Penalty parameter:
text with stop words window =3 5.0
word2vec | beAWARE | words removed | training algorithm =1 Kernel type: rbf} 0,95855 | 0,06842 | 0,12772
corpus =
beAwareEnglishFloods
_corpus
vector dimension = SVM
200 {Penalty parameter:
text with stop words window =3 5.0
word2vec | MediaEval | words removed | training algorithm =0 Kernel type: rbf} 0,79341 | 0,82813 | 0,81040
Table 13. Best parameters from TF, TFIDF, word2vec text classification methods.
3.7 Integration of the social media module into the beAWARE system

The social media monitoring framework is a module that runs constantly and makes use of
real-time data. For reasons of demonstration, we have developed a single page web

Page 35

@
heAWARE

D4.1-V1.0

interface® that serves to initiate the framework’s procedure at a specific time, for a specific
dataset. As it can be seen in Figure 10: Screenshot of the demonstration tool

, the left side contains a set of simulated tweets that have been proposed by beAWARE user
partners. These tweets were actually posted in Twitter and successfully crawled. To initiate
the process of the social media module, the “Insert to DB” button has to be clicked. After the
workflow (described in Section 3.1) is completed, the tweets that were estimated as
relevant and were sent to BUS will be displayed on the right side. Clicking the “Empty the
DB” button will clear the consumed tweets and it will be able to repeat the demonstration.

Complete set of simulated tweets

A

Matteotti square is flooded!
@Nathan Valois » Thu, 19 Oct 2017 16:04 « W

Surcharge of the drainage network in Matteotti Square. #flooding

@Nathan Valois » Thu, 19 Oct 2017 16:39+ W

The levee collapsed!

@Nathan Valois » Thu, 19 Oct 2017 16:57 « W

#Rain and #flooding: black Saturday of financial market

@Nathan Valois » Thu, 19 Oct 2017 17:07 « ¥

Today. | work in vicenza!

@Nathan Valois « Thu, 19 Oct 2017 17:20 « ¥

Every #flooding, let all people make synchronized swim with glittering
swimsuits

@Nathan Valois » Thu, 19 Oct 2017 17:24 + W

#weatherAlert, Streets dello Stadio
is going to be flooded. People
struggle to walk because of .
https:/it cofjulfaxcXjK

@Nathan Valois Fri, 20 Oct 2017
1053+ W

0}
nenwnn[Relevant tweets consumed by BUS

Matteotti square is flooded!

@Nathan Valois Thu, 19 Oct 2017 16:04 « W

The levee collapsed!

@Nathan Valois » Thu, 19 Oct 2017 16:57 « W

Today, | work in vicenzal

@Nathan Valois « Thu, 19 Oct 2017 17:20 « W

@Nathan Valois « Fri, 20 Oct 2017
1134 9

Bacchiglione overtopped at Angeli Bridge
@Nathan Valois « Fri, 20 Oct 2017 12:18 + W

The levee near Angeli Bridge shows cracks and failures
@Nathan Valois « Fri, 20 Oct 2017 1222+ ¥

The water isolates 50 families
@Nathan Valois « Fri, 20 Oct 2017 12:40 « W

© Insert to DB & Emply the DB Clear to repeat demo

Initiate demo

Figure 10: Screenshot of the demonstration tool

& mklab-services.iti.gr/beAWARE demo/

Page 36

http://mklab-services.iti.gr/beAWARE_demo/

o
heAWARE D4.1-V1.0

4 MULTIPLE SENSING PLATFORMS

Situational awareness is crucial to make decisions. One source of information in a crisis
situation is the sensor network that is available in the area of operation. For a decision
support system to be able to use the data from these sensors, it needs a unified way to
access not just the data from a multitude of different types of sensors, but also the meta-
data about these sensors.

4.1 Sensor Types

There are several ways to classify sensors from the point of view of the beAWARE platform:

e Online / Offline: Online sensors perform measurements and transmit their readings
to the system without human intervention. Offline sensors require human
intervention before their readings become available to the system.

e Remote / in-, ex-situ: Remote sensors observe the subject from a distance, while in-
situ and ex-situ sensors need to be located at the same location as the observed
subject. In the case of in-situ measurements the sensor can be brought to the
subject, in the case of ex-situ measurements the subject, or a sample of the subject,
has to be brought to the sensor (usually, for an analysis in laboratory).

e Machine-interpretable data / Non machine-interpretable data: Machine-
interpretable data can be processed by the system without human intervention. Non
machine- interpretable data requires a human to interpret the data.

In the beAWARE platform, not all combinations of the above classifications are present. So
far, the following four classifications of sensors have been identified to be most relevant for
the beAWARE platform:

e Onlineg, in-situ, machine interpretable (e.g. Weather stations, water level gauges)
e Offline, in-situ, machine interpretable (e.g. Manual water level measurements)

e Offline, remote, machine interpretable (Satellite / drone based sensors, etc.)

e Offline, in-, ex-situ, Non machine interpretable (Photos, observation notes, etc.)

Besides these actual sensors, mathematical models can also be seen as virtual sensors.
Depending on the way the models are integrated into the beAWARE platform, they can be
classified as online or offline. An example of an online, virtual sensor is the weather forecasts

Page 37

o
heAWARE D4.1-V1.0

software of the Finnish Meteorological Institute (FMI). Also the image and video analysis
components can be seen as virtual sensors.
4.2 Data Types

The classes of sensors described above can produce a range of different types of data that
are stored in different ways. The main types of data relevant for the beAWARE project are:

o Time series
. Geospatial Coverages (one-off or series)
. Images and video

4.2.1 Time series

Time series are measurements of the same observed property (OGC, 2011), for instance the
temperature, taken at a more-or-less regular interval, for instance every hour. They can be
taken by a sensor with either a fixed location (fixed-point), or by a moving sensor (moving
point).

Fixed-point time series are generated by, for instance, the automatic water-level gauges,
maintained by the Alto Adriatico Water Authority (AWAA) in the Vicenza region, or the
national weather stations available throughout Europe. These sensors are located in-situ,
and generate data at a fixed time interval.

Moving-point time series are generated by sensors that can be hand-held, or mounted on a
vehicle or drone, and have a different location for each measurement. The GPS receivers of
the first-responders are an example of this type.

Both types of time series are typically stored in servers that implement the OGC Sensor
Observation Service standard (SOS; OGC, 2012), or the OGC SensorThings APl standard
(Liang, 2016; OGC, 2016).

4.2.2 Geospatial Coverages

Geospatial coverages are typically generated by satellite-, aircraft- or drone-based sensors,
or by mathematical models for spatial interpolation. They are images, where each pixel
represents a measured (or processed) value of an observed property for a certain
geographical region. Depending on the exact sensor type, a pixel can represent a region of a
few square meters, up to many square kilometres. Typically, geospatial coverage data is
served using a Web Map Service (WMS; OGC, 2006) or Web Coverage Service (WCS; OGC,
2012-2) like Geoserver (GeoServer, 2017).

Page 38

o
heAWARE D4.1-V1.0

4.2.3 Images, video and text

This class covers all the non-machine-interpretable data types. Examples are photos, videos
and text messages sent by first-responders or the public. The beAWARE platform will not
directly be able to interpret these data, and first stores the files as they are. The image and
video analysis components will extract as much information from the files as possible, but
the end-user may still want to review the original. The system can present the availability of
media files at relevant points in the platform, depending on the available metadata. For
instance, if the geolocation of the recording is available, the platform can show the
availability of the data as icons on a map. If the data consists of image files, the platform can
display the image, with any automatic analysis results once they are available.

4.3 Pilots

The different pilots in the beAWARE project cover different types of extreme weather events
and thus employ different types of sensors. Since the pilots are still in development, this
initial list of relevant sensors is subject to change.

4.3.1 Flood Pilot

The most relevant sensors for the flood pilot are the water-level sensors in the different
rivers in the pilot area, and the weather stations recording precipitation, since they reflect
the current situation. These are in-situ, on-line sensors that generate machine-interpretable
time-series data and they are always available, not just in an emergency situation.

The FMI makes forecasts of the weather, and AWAA makes forecasts of the water-levels in
the different rivers in the pilot area. The models used to create these forecasts can be seen
as virtual sensors that generate machine-interpretable data. The water-level forecasts are
time-series, while the weather forecasts are coverages that can be converted to time-series
if needed. These models run automatically and are also available when there is no
emergency situation.

First responders and the general public can send messages, with images and video, to the
beAWARE system. When these data arrive in the system, the system cannot directly use this
data. These raw data is therefore classified as off-line, remote, non-machine-interpretable,
while the analysed results are on-line, virtual, machine-interpretable. On one side, this data
is analysed first by the image/video/text analysis components to extract the important
information and to make it available for the next analysis steps. This generated result can be
classified as machine-interpretable data. On the other side, the raw data can be directly
displayed to a user, to allow next to the automated evaluation a manually triggered action.

Page 39

o
heAWARE D4.1-V1.0

4.3.2 Fire Pilot

An important indicator for fire-risk is the current and predicted weather. Important sensor
data for this pilot are therefore data from weather stations (on-line, in-situ, machine-
interpretable, time-series) and the weather forecast (on-line, virtual, coverages/time-series,
machine-interpretable). A high temperature, combined with a low humidity and little
precipitation increases the risk of fire.

Next to the risk of a fire, the fast detection of existing fires is very important to allow a quick
containment. A possible way to detect these is by using static cameras that constantly
record the area of interest (on-line, remote, non-machine-interpretable) and analyse the
data from those cameras using video analysis software (on-line, virtual, machine-
interpretable).

Messages sent by citizens or first responders are also important, since the static cameras
don’t cover the overall area. This non-machine-interpretable data is handled the same way
as in the Flood pilot.

4.3.3 Heatwave Pilot

Also for the Heatwave pilot the weather situation and the weather forecast are important
sensor inputs, the same as for the other two pilots. Where for the Fire pilot a low humidity
increases the risk of fire, for the heatwave pilot a high humidity increases the severity of a
heatwave. The messages, images and videos sent by first responders and the general public
are also handled the same way as in the Flood and Fire pilot.

Another relevant type of information is how crowded different public buildings that have air-
conditioning are. This allows a systematic guidance of people to those places. Until now, it’s
unclear if pertinent data can be gathered using online sensors. However, it is possible to
collect such data by using messages/images sent by first responders and citizens using the
mobile app; like in all cases this offline, non-machine-interpretable data first needs to be

analysed to extract machine-interpretable data.

4.4 OGC SensorThings APl Data Model

The model used to describe the sensors and their metadata in the beAWARE ontology is
based on the data model described in the SensorThings APl standard. The OGC SensorThings
API standard (Liang, 2016; OGC, 2016) defines both a data model and a REST-API to access
the data. It can be described as Sensor Web Enablement for the Internet of Things. It is a
modern, light-weight REST API designed for storing and requesting sensor data, with
advanced filtering options. The data model of this standard is based on OGC/ISO

Page 40

o
heAWARE D4.1-V1.0

Observations and Measurements model (OGC, 2011), which is a standardised model to
describe a sensor.

The data model of the OGC SensorThings APl consists of 8 entities, with their properties and
relations (see Figure 11). The entities are:

e Thing: A virtual or physical object. Depending on the use case this can be the object
being observed, such as a river or river section, or the sensor platform, such as a
satellite or weather station.

e Location: The locations of Things. These can be geographic locations, encoded as
points or areas, or symbolic locations, like “Crossing of road X and street Y”

e HistoricalLocation: the link between a Thing and a Location, with the time indicating
when the Thing was in a certain Location.

e Sensor: The meta-data of a sensor that generates data. This could be a real sensor, or
mathematical model generating a prediction.

e ObservedProperty: A property of the feature of interest that is being observed by a
sensor. For instance, the water level or the air temperature.

e Datastream: a collection of Observations of one ObservedProperty, made by one
Sensor, and linked to one Thing.

e Observation: a measurement made by a Sensor.

o FeatureOfinterest: The geographic area or location for which an Observation was
made. This can be the same as the Location of the Thing, which is often the case for
in-situ sensing. In the case of remote sensing, the feature of interest can be different
from the location of the Thing, depending on what is chosen as the Thing. The
feature is a geographical point or a polygon encompassing an area or volume, usually
encoded in GeoJSON.

Page 41

o
heAWARE D4.1-V1.0

Sensor ObservedProperty
- name: CharacterString - name: CharacterString
- description: CharacterString - description: CharacterString
- encodingType: ValueCode - definition: URI
- metadata: Any +sensor 1[+observedProperty
1
F 0..* [+datastreams
+datastreams Datastream Observation
- name: CharacterString -result: Any)
- description: CharacterString L datastream 0. phenomenonTime: TM_Object
- observationType: ValueCode i +observations resgltﬁm?: TM_Instant
+datastreams|- UnitOfMeasurement: JSON_Object(0..1] 'Va"d“mte- T':J_Pef"é‘\jll?--“o i
= observedArea: GM_Envelope[0..1] 5 paralrtne eﬁ‘. szl a uel[: -
Thing 1_ |- resultTime: TM_Period[0..1] resultQuality: DOIECED
Fthing 0..*]+observations

- name: CharacterString
- description: CharacterString

- properties: JSON_Object[0..1] lthing +featureOfinterest |1
+locations]0..* 0. ¥ ey | = FeatureOfinterest
+historicalLocations] H.'Sto'”ca Location - name: CharacterString
' +historicalLocationgl” “me-TtMinstant - description: CharacterString
+things|0..* 0+ - encodingType: ValueCode
Location 1.* - feature: Any
- name: CharacterString +location

- description: CharacterString
- encodingType: ValueCode
- location: Any

Figure 11: the OGC SensorThings APl data model

The relations between these entities are also defined by the data model. Most relations are
one-to-many: An Observation must have one FeatureOfinterest and one Datastream, while a
Datastream and FeatureOflinterest can have zero or more Observations. A Datastream must
have one ObservedProperty, one Sensor and one Thing, while a Thing, ObservedProperty
and Sensor can have zero or more Datastreams. A HistoricalLocation must have one Thing,
while a Thing can have zero or more HistoricalLocations.

The relations of Location are a bit more involved: a Thing can have zero or more Locations,
but these Locations must all be different representations of the same physical location (e.g.
a geospatial location, represented by GPS coordinates, and a symbolic location). A Location

can have zero or more Things.

Each time a Thing is linked to a new Location (or set of Locations) a new HistoricalLocation is
generated that tracks the time when the Thing was at this Location. A HistoricalLocation also
has the restriction that if it has more than one Location, these Locations have to be different

representations of the same real-world location.

When applied to beAWARE, for example to a water-level gauge in a river section, the Thing
could be the river section of which the sensor is measuring the water level. The Thing would
have a location, with a polygon describing the layout of the river section. Since river sections
usually do not move much, there would be only one HistoricalLocation. The Sensor entity
would describe the exact properties of the water-level gauge, like brand, type and accuracy.
The ObservedProperty would be named “water level” and contain an exact reference to the
water level entry in the knowledge base. For this set of Thing, Sensor and ObservedProperty
there would be a Datastream, grouping the water-level observations for this sensor in this
river section. Each value measured by the sensor would be stored as an Observation. Since

Page 42

o
heAWARE D4.1-V1.0

the sensor is static, each Observation is linked to the same FeatureOfinterest, which has the
exact coordinates of the Sensor.

An important feature of the OGC SensorThings API is that it is possible to request data from
related entities in a single query. For example, in a single request, one can fetch a set of
Things, including the Datastreams belonging to those Things, and for those Datastreams the
ObservedProperty, and the last Observation. This makes it very easy to write data
visualisation tools, since it is possible to fetch all relevant data in one request, instead of
having to make many separate, asynchronous requests.

For a temperature sensor located at the same spot as the water-level gauge, the same Thing,
Location and FeatureOfinterest entities would be used. Only new Sensor, ObservedProperty
and Datasteam entities would need to be added.

4.5 Mapping the sensors onto the Ontology

In order to make the beAWARE platform able to offer a coherent view of all data available
for a given vulnerable object (like living being, infrastructure or possessings), the platform
needs to know which data is available and how it is relevant for the vulnerable object. To
achieve this, all information about vulnerable objects and their exposed risks have to be
described in the beAWARE ontology, as will be described in detail in D4.2 - Semantic
representation and reasoning. In order to enable the capability of the platform to combine
information about the vulnerable objects with sensor data, the information related to a
sensor has to be mapped to the same ontology. At this point, we would like to mention that
only the sensor metadata is mapped to the ontology. This allows referencing from the
ontology to the SensorThingsAPI server. The measurements themselves are stored inside the
SensorThingsAPI server and are accessible through this relation.

The representation of sensor data and metadata in the ontology requires that the entities of
the SensorThingsAPI are mapped to concepts in the ontology and are linked to the other
relevant concepts. The result of this mapping is that most of the entity types in the data
model of the SensorThingsAPI are represented by a concept in the beAWARE ontology. Since
the ontology is still being developed, the exact mapping might still change.

The concept “Thing” in ontologies is reserved, meaning that it is impossible to name a
concept “Thing”. Therefore, the entity “Thing” in the SensorThings APl is mapped to the
concept “Asset Representation” in the ontology. An Asset like a river is monitored by a
SensorThing. The location of a “Thing” in the SensorThingsAPI is represented by the concept
with the same name in the ontology. Historical locations won’t be used in our case. The
entities “ObservedProperty” and “Datastream” are represented by the “Parameter” and

Page 43

o
heAWARE D4.1-V1.0

“DataSet” concepts respectively. Since the ontology will not store any observation itself,
those measurements are reference by the “Service Endpoint” concept, which provides an
URL to the datastream in the SensorThingsAPI server. Those references allow an easy
navigation between the ontology and the data in the SensorThingsAPI server.

4.5.1 Time series

This type of data and its metadata can be directly modelled according to the SensorThings
AP| data model. For this type of data, only the metadata (such as Sensor type, observed
properties, etc.) is stored in the ontology. The observations themselves are not stored in the
ontology, but in a separate server that implements the SensorThings API. Since this server
will also have to store metadata as specified by the SensorThings API, there will be some
duplication of metadata between the ontology and the SensorThings API server. An example
of time series data is the water level at some point in the river. It contains measurements of
the past, the current value as well as the predicted value in the future.

4.5.2 Geospatial Coverages

For this type of data, only the metadata will be stored in the ontology, the data itself is
usually made available through a Geoserver instance, using WMS or WCS. To link the
metadata in the ontology to the data, the Observation instance in the ontology could
contain a URL, which points to the data stored in the Geoserver instance. For example, the
weather forecast matches this category.

4.5.3 Images and Video

These sensor data will be stored as files in the platform. Since these data come from mobile
devices of the public and of first responders, and are not inherently geo-referenced, it is
important to define a clear way to organise these data and add relevant metadata like
location, who sent the file, and which tasks they are relevant for. Such files are represented
by the media item concept in the ontology, which has a reference to the stored file in the
platform. By analysing those media files with analytical components, machine-readable
information is generated. This contains for example the detection of vulnerable objects
inside the media files which is represented by the concept with the same name.

Page 44

o
heAWARE D4.1-V1.0

5 CONCLUSIONS

In this report, we have presented the first version of the social media monitoring tool, as
well as the sensor data wrappers of the beAWARE platform. Regarding the social media
information, we are connected to Twitter’s Streaming API that allows real-time feeds and is
preferable to continual requests from Twitter's REST APl. Moreover, keyword-based filtering
of tweets is the most fitting option to the framework's goal at this stage. The list of search
keywords and accounts had to be reconsidered because some keywords had been delivering
only unrelated content. At the storage of data, we indexed tweets using the JSON format
provided by Twitter Streaming API, as it is found to be optimal for storing tweets in a Mongo
database and allows interoperable solutions. However, we had to enrich it with additional
fields to improve efficiency in the overall flow of data in the further stages of data analysis.

Experiments on two collections of data, involving textual and visual information has shown
that the best performing method in the case of text classification is the use of the TFIDF
method for text representation and Random Forests as classifier. The other methods that
were tested were the TF method together with Random Forests, the word2vec with SVM
and the Jaccard Similarity Coefficient. The Jaccard Similarity Coefficient performed rather
well but was not selected eventually for the text classification module since it is rather slow
compared to the others. Moreover, as far as visual classification is concerned, the DCNN-
based features together with an SVM classifier were selected as the best performing method
among other simple color-based or edge-based features.

Regarding the management of sensor data in the beAWARE platform, we described the
different types of sensor data relevant to the beAWARE use cases, and the different
approaches taken for storing these different types of sensor data. The initial plans for linking
the sensor data to the ontology have also been laid out, but these need to mature more, and
will be described in detail in future deliverables.

Future work includes expanding the import mechanisms for the different sources of sensor
data used in the beAWARE pilots, adding mechanisms for threshold detection and automatic
data processing to the sensor data platform. Future work in social media monitoring involves
the addition of a multimodal clustering module to support the visualisation of incoming
tweets in the PSAP, further exploration on the on the data fusion of visual and textual
information and optimal text representation and feature extraction method. The plan is also
to examine the enhancement of the crawling process with location-based search and burst

detection for the identification of specific events.

Page 45

o
heAWARE D4.1-V1.0

6 REFERENCES
Aggarwal, C.C. and Zhai, C. eds., 2012. Mining text data. Springer Science & Business Media.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L., 2008. Speeded-Up Robust Features (SURF).
Computer Vision and Image Understanding, 110(3), 346—359.

Chandrashekar, G., Sahin, F., 2014. A survey on feature selection methods. Computers &
Electrical Engineering, 40 (1), 16-28.

Daiber, J., Jakob, M., Hokamp, C., & Mendes, P. N., 2013. Improving efficiency and accuracy
in multilingual entity extraction. In: Proceedings of the 9th International Conference on
Semantic Systems (pp. 121-124). ACM.

GeoServer, 2017, http://geoserver.org/, November 2017

Imran, M., Castillo, C., Diaz, F. and Vieweg, S., 2015. Processing social media messages in
mass emergency: A survey. ACM Computing Surveys (CSUR), 47(4), p.67.

Jégou, H., Douze, M., Schmid, C. and Pérez, P., 2010. Aggregating local descriptors into a
compact image representation. In: Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on (pp. 3304-3311). IEEE. San Francisco, CA.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S. and
Darrell, T., 2014. Caffe: Convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM international conference on Multimedia (pp. 675-678). ACM.

Jun Yan, 2009. Text Representation. Encyclopedia of Database Systems, 3069-3072

Krizhevsky, A., Sutskever, |., and Hinton, G. E., 2012. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing systems (pp.
1097-1105).

Liang, S.; Huang, C. & Khalafbeigi, T., 2016. OGC SensorThings APIl, Open Geospatial
Consortium: Wayland, MA, USA.

Lowe, D. G., 2004. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60, 91-110.

Markatopoulou, F., Mezaris, V., & Patras, |., 2015. Cascade of classifiers based on binary,
non-binary and deep convolutional network descriptors for video concept detection. In:
Proc. of the IEEE International Conference on Image Processing 2015 (pp. 1786—1790).

Page 46

o
heAWARE D4.1-V1.0

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their
compositionality." Advances in neural information processing systems. 2013.

OGC, 2006, OpenGIS Web Map Server Implementation Specification, ISO 19128,
http://www.opengeospatial.org/standards/wms

OGC, 2010, OpenGIS Web Feature Service 2.0 Interface Standard, ISO/DIS 19142:2010,
http://www.opengeospatial.org/standards/wfs

0GC, 2011. Observations and Measurements, ISO/DIS 19156:2011,
http://www.opengeospatial.org/standards/om

0OGC, 2012. 0GC Sensor Observation Service Interface Standard,
http://www.opengeospatial.org/standards/sos

0OGC, 2012. 0GC WCS 2.0 Interface Standard,
http://www.opengeospatial.org/standards/wcs

OGC, 2016. OGC SensorThings API Part 1: Sensing,
http://www.opengeospatial.org/standards/sensorthings

Perronnin, F., Sanchez, J., Mensink, T., 2010. Improving the Fisher kernel for large-scale
image classification. In: 11th Eur. Conf. on Computer Vision: Part IV (pp. 143-156). Springer-
Verlag.

Pittaras N., Markatopoulou F., Mezaris V., Patras |., 2017. Comparison of Fine-Tuning and
Extension Strategies for Deep Convolutional Neural Networks. In: Amsaleg L., Gudmundsson
G., Gurrin C., Jénsson B., Satoh S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in
Computer Science, vol 10132. Springer, Cham

Qiu, G., 2002. Indexing chromatic and achromatic patterns for content-based colour image
retrieval. Pattern Recognition, 35, 1675-1686.

Selvaperumal, P., & Suruliandi, A., 2014. A short message classification algorithm for tweet
classification. In: 2014 International Conference on Recent Trends in Information Technology
(ICRTIT) (pp. 1-3). IEEE.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image
recognition. CORR, arXiv technical report.

Song, G., Ye, Y., Du, X., Huang, X., & Bie, S., 2014. Short text classification: A survey. Journal
of multimedia, 9(5), 635-644.

Page 47

o
heAWARE D4.1-V1.0

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.
and Rabinovich, A., 2015. Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 1-9).

Vedaldi, A. and Lenc, K., 2015. Matconvnet — convolutional neural networks for matlab. In:

Proceeding of the ACM International Conference on Multimedia.

Vijaymeena, M. K., and Kavitha, K., 2016. A Survey on Similarity Measures in Text Mining.
Machine Learning and Applications: An International Journal, 3 (1), 19-28.

Page 48

