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Abstract 

This deliverable reports on social media crawling and multiple sensing platforms. Social 
media monitoring involves the collection and relevance classification analysis of Twitter 
content and multiple sensing platforms are associated with the processing of beAWARE’s 
sensor data, along with their storage and metadata indexing. The initial version of the 
considered modules is presented in this document, in accordance with the pilot use case 
requirements in terms of data collection, and the position of the modules within the 
beAWARE overall platform. Deliverable D4.1 sets also the basis for further improvements by 
presenting the directions towards the advanced version of social media monitoring and of 
the framework for managing the multiple sensing platforms. 

The information in this document reflects only the author’s views and the European Community is not liable for any use 
that may be made of the information contained therein. The information in this document is provided as is and no 
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Executive Summary 

This deliverable reports on the first version of beAWARE’s social media crawling and multiple 

sensing platforms, which collect and process social and sensor data. Sensor data and social 

data are two different sources of information which are involved in beAWARE project. The 

analysed content from both sources of information contributes to the delivery of a more 

comprehensive user experience. Both tools are discussed, in their first version, including 

directions for further improvements, in the context of beAWARE. 

The social media monitoring tool involves the crawling, representation, storage and analysis 

of Twitter content, aiming to classify tweets as relevant or irrelevant to each use case 

scenario, for all languages considered, i.e. Greek, Italian, Spanish, and English. Relevance 

classification analysis aims to deliver to the beAWARE end user information that is 

potentially useful for decision makers, emergency managers and operators, through 

effective visualisations. The social media information is then passed to the text analysis 

module to extract concepts and locations from text, before sent to the Knowledge Base for 

integration and decision making. The social media monitoring module offers information 

from citizen observations that serves complementary to the text messages, audio messages, 

images and videos which are sent by the first responders.  

Sensor data are also involved in the decision making process. This report presents a unified 

way to access not just the data from a multitude of different types of sensors, but also the 

meta-data about these sensors. A sensor network is crucial for making decisions in any area 

of operation, so the methods and tools for utilising the information from sensor data are 

presented in detail in this document. 
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TFIDF Term Frequency Inversed Document Frequency 

URL Uniform Resource Locator 
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1 INTRODUCTION 

Disaster monitoring based on sensor data and social media posts has raised a lot of interest 

in the domain of computer science the last decade, mainly due to the wide area of 

applications in public safety and security. The abundant nature of these data renders them 

as one of the most valuable sources to extract and deduct early warnings or identification of 

an ongoing or eminent disaster (Imran et al., 2015). This deliverable presents the first 

version of the considered social media monitoring and sensor data collection framework in 

beAWARE.  

As far as social media are concerned, we present the framework developed for monitoring 

the flow of Twitter posts. The data collection from Twitter is ensured by connecting to the 

Streaming API of Twitter. Crawled data are stored and indexed, as a pre-processing step 

before their analysis, which focuses, at this version, on their classification as relevant or not 

to the considered pilot use cases. In the proposed beAWARE classification approach both 

visual (if any) and textual modality participate in the relevance classification stage. 

In the case of sensor data, data types are firstly identified and discussed, especially the 

meta-data which are involved in sensor data wrappers. Moreover, the relation of the 

considered data and sensor types to the beAWARE pilot use case scenarios is reported. 

Furthermore, the OGC SensorThings API Data Model is presented in the context of 

beAWARE. Last but not least, sensor data are mapped to the beAWARE ontology, including 

time series data, geospatial coverages, images and video information. 

Finally, we conclude our report by highlighting some remarks and lessons learnt from 

current experiments, and we further identify future directions for the improvement of the 

developed tools, in the context of beAWARE project. 
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2 ARCHITECTURE 

The two sources of information which are considered in this document are social media and 
sensor data, under Task 4.1 (Social media monitoring) and Task 4.2 (Monitoring machine 
sourcing information from IoT and M2M platforms), respectively. The position of the 
modules concerning social media and sensor data in the beAWARE architecture are 
illustrated in Figure 1. The modules are part of WP4 in beAWARE, which aggregates 
emergency information for decision support, aiming to generate early warnings by 
semantically fusing data from multiple sources, and to assist the Twitter report generation 
on the PSAP visualisations. 

 

Figure 1: The beAWARE system architecture 

The social media monitoring module interacts with the text analysis module, via a message 
bus. The text from the collected tweets is processed so as to extract high-level concepts and 
to estimate locations. The output of the text analysis module is then sent to the KB in a JSON 
format that is parsed for KB semantic integration. 

In the following, section 3 describes the methods that deal with social media information 
and section 4 the framework of beAWARE which are associated with the collection and 
processing of sensor data. 
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3 SOCIAL MEDIA MONITORING 

In this Section, we present the social media monitoring module and explicate how the 

classification of tweets as relevant or not is accomplished. Firstly, the data collection process 

is presented, based on the data requirements that have been identified by beAWARE user 

partners. Secondly, the data representation that is followed in beAWARE is discussed, based 

on the standard JSON format given by Twitter. Thirdly, the analysis on each tweet is done in 

two levels; textual and visual modalities are involved in the machine learning process. The 

module delivers only the classified-as-relevant tweets, as they are obtained by a multimodal 

classification service, being part of the social media monitoring module. 

3.1  Framework overview 

The aim of the social media monitoring module is to collect posts from Twitter that appear 

to be relevant to the three main pilots, i.e. floods, fire, and heatwave, in their respective 

geographical locations. The crawling process needs to be real-time and effective, able to 

handle large streams of data, especially when keywords such as “fire” have multiple 

meanings and needs disambiguation. The module collects tweets in English, Greek, Italian 

and Spanish, which are published by citizens, civil protection organizations, online news 

websites or any other account, aiming to provide relevant information about crisis events.  

The complete flow of beAWARE’s first version of the social media monitoring tool is 

demonstrated in Figure 2. 

 

Figure 2: Complete flow of the beAWARE framework 



   D4.1 – V1.0  

 

Page 11 

Before the insertion to the database, we determine whether the new tweet is relevant or 

irrelevant to the pertinent use case (floods, fire or heatwave), so that only the relevant posts 

are forwarded to the respective analysis components, where the extraction of pertinent 

information (events, location, etc.) takes place. If an image was uploaded along with the 

tweet, we use the URL of the media to extract visual features based and then feed them to a 

pre-trained SVM classifier which returns a binary score, i.e. 1 for relevant and 0 for 

irrelevant, as described in Section 3.6.1  . Please note that this classification is language-

independent, since only visual characteristics are taken into account. Then, the JSON object 

containing all the information of the tweet is updated to include the visual features and the 

estimated relevancy.  

If the received tweet does not include an image or the SVM classifier returns that the 

attached image is irrelevant, we use the actual text of the tweet in order to estimate the 

relevancy, by comparing it with Twitter posts that were manually annotated. As described in 

the following, a dedicated graphical interface has been developed for browsing the compiled 

social media collections and annotating tweets as relevant/irrelevant. To enhance text 

comparison, we utilize the DBpedia Spotlight1 that identifies and links (i.e. disambiguates) 

natural language mentions to respective DBpedia resources, e.g. given a tweet that 

mentions “Heavy rain and flood threat in northern Italy”, the DBpedia concepts “Rain”, 

“Flood”, and “Italy” will be extracted. Relevancy is estimated by performing Jaccard 

Similarity2 between extracted concepts of the received tweet and the pre-detected concepts 

of every tweet of the targeted collection that was annotated as relevant. If there is an 

adequate number of annotated tweets, namely more than 20, and the maximum calculated 

similarity is larger than a constant “epsilon” (currently set at 0.3), the new tweet is 

considered as relevant; elsewise as irrelevant. Afterwards, the JSON object is again updated 

to include the extracted concepts and the estimated relevancy. 

Finally, the updated JSON is inserted to the corresponding collection. In case that it has been 

estimated as relevant, either from the SVM classifier or the Jaccard Similarity method, it is 

pushed to the cloud service bus as a message that consists of the tweet’s unique 

identification, the matching use case, and a timestamp. All subscribers can access the 

marked Twitter post directly from the MongoDB database using the id provided in the 

message. 

                                                      

1
 https://github.com/dbpedia-spotlight/dbpedia-spotlight 

2
 https://en.wikipedia.org/wiki/Jaccard_index 

https://github.com/dbpedia-spotlight/dbpedia-spotlight
https://en.wikipedia.org/wiki/Jaccard_index
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3.2  Data collection from Twitter 

In order to gain access to Twitter’s global stream of data, we have exploited the Streaming 

APIs3, a streaming client that receives tweets the moment that they are published. 

Compared to Twitter’s REST APIs4  , this option offers a real-time stream of tweets instead of 

constantly making requests and thus overriding any rate limiting, i.e. maximum number of 

requests. The only limitation when using the Streaming APIs is that each account is allowed 

to create only one standing connection. 

There are various streaming endpoints that can be divided into the following categories: 

Public streams, User streams, and Site streams. In our case, the “POST statuses/filter” 

endpoint of public streams is the most suitable, since it focuses on public data flowing 

through Twitter that matches one or more filter predicates. Specifically, the “track” field can 

be used to define up to 400 search keywords, combined with an OR operator, so that the API 

will return tweets matching any of these keywords. 

To consume Twitter’s Streaming API, we chose to adopt the Hosebird Client (hbc)5, an open-

source and easy-to-use Java HTTP client. A required parameter is the user account’s 

credentials, while an optional parameter is the track keywords. For each combination of 

pilot and language we sustain a separate collection in a MongoDB database to store the 

crawled tweets. In addition, there is a “Feeds” collection where we define a set of relevant 

keywords to serve as track terms during the crawling procedure. 

After connection with the Streaming API is established, the client constantly receives newly 

created tweets in JSON format. We choose to maintain the structure provided by the API, 

since the JSON format fits well with a MongoDB database. Every time a new tweet is 

retrieved, we examine which one of the track terms exists in the tweet’s text. In this way we 

can match the tweet to the corresponding language and pilot (e.g. “inundación” matches to 

Spanish and floods), in order to insert it to the respective collection. 

3.3  Data collection requirements 

The main target of the social media monitoring framework is to collect in a real-time manner 

any Twitter post that could be possibly reporting a crisis event. The crawling process is 

                                                      

3
 https://dev.twitter.com/streaming/overview 

4
 https://dev.twitter.com/rest/public 

5
 https://github.com/twitter/hbc 

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/rest/public
https://github.com/twitter/hbc
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achieved with Twitter’s Streaming API, which offers three alternative ways to filter what 

data should be consumed: 

1. Get statuses that contain any keyword of a predefined list  

2. Get statuses from particular user accounts. 

3. Get statuses that were posted in certain locations, specified by bounding boxes. 

The first option fits our goal the most, since a set of keywords is a usual practice to detect 

data that refer to specific use cases, and thus it was adopted in this framework. On the other 

hand, the third option could serve in the future as an extension. 

Language 
Use case scenario 

Floods Fires Heatwave 
English flooding forest_fires heatwave 

Greek 

πλυμμήρες 
πλημμύρες 
GSCP_GR 

πυρκαγιά 
πυρκαγια 
πυρκαγιες 
πυρκαγιές 
pyrosvestiki 
GSCP_GR 

καύσωνας 
Κελσίου 
θερμοκρασία_ρεκόρ 
GSCP_GR 
 

Italian 

alluvione 
alluvionevicenza 
allagamento 
bacchiglione 
fiumepiena 
allertameteo 
sottopassoallagato 
alluvione2017 
allertameteovicenza 
esondazione 
livellofiume 

fiamme 
vigilidelfuoco 
piromane 
pompieri 
 

ondatedicalore 
allertacaldo 
emergenzacaldo 
altetemperature 
troppocaldo 

Spanish 

fuertesprecipitaciones 
gotafría 
inundación 
inundaciones 
desbordamiento 
riada 
riadas 
lluviastorrenciales 
tormentas 
caudaldesbordado 

incendio 
llamasdefuego 
bomberos 
focodeincendio 
 

oladecalor 
altastemperaturas 
nochetropical 
golpedecalor 
sequía 

Table 1: Search keywords per language and pilot 

The initial set of keywords was composed of words suggested by the beAWARE user group 

members, for the languages covered in beAWARE’s use cases, namely Greek, Italian, and 

Spanish, and for English, as an additional control and demonstration language. However, 



   D4.1 – V1.0  

 

Page 14 

after using the proposed keywords in practice, it was noticed that some of them were 

bringing a large number of irrelevant tweets, so they were ignored in the current 

implementation that also involves the creation of a training set with balanced ratio between 

relevant and irrelevant Twitter posts. The set of tested and ignored keywords are: allerta, 

pioggia, maltempo, sottacqua, soccorso, Vicenza, protezionecivile, regioneveneto, piena, 

veneto, and corte de carretera in the case of floods; incendio, forestali, fumo, 

allertaincendio, fuego, humo, quema/quemas, conato, quemada/quemado, extinción, 

inhalación de humo, intoxicación de humo, evacuación/confinamiento in the case of fires; 

protezionecivile and hipertermia in the case of heatwave scenarios.   

The complete list of keywords is shown in Table 1, separated by language and use case 

scenario. It can be noticed that some of the listed keywords are aggregated words (e.g. 

allertameteo), since (i) it is a common format in Twitter due to hashtags or the character 

limit, and (ii) these words separately are expected to return more irrelevant than relevant 

tweets. 

After Twitter’s response, we store the collected data so as to be able to proceed with further 

analysis on the collected content. The representation of the gathered tweets is presented in 

the following section. 

3.4  Data representation from Twitter content 

After a connection is opened between our framework and the Twitter Streaming API, new 

results are sent through this connection whenever a matched post is published. The received 

tweets are encoded in JSON format, which is based on key-value pairs, with named 

attributes and associated values. We prefer to keep this provided structure while storing the 

tweets in our database, because JSON is indicated for MongoDB installations.  

Figure 3 displays a screenshot of a tweet that is stored in Mongo, in a graphic representation 

of the JSON format, and all fields can be seen together with their content and type. 
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Figure 3: Original and additional fields of a tweet in a tree view 

Figures Figure 4 and Figure 5 display an expanded view of two important fields, i.e. media 

and extended_tweet, which are described in the next paragraph. 
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Figure 4: Expanded view of field “entities” 

 

Figure 5: Expanded view of field “extended_tweet” 

As it can be seen in the above figures, plenty of information is offered for a single post, but 

there are some fields that play a significant role in the social media monitoring procedure. 

To begin with, id_str serves as a string identifier that can be used in different stages of the 

beAWARE framework in order to refer to a certain tweet, e.g. when communicating with the 

Text Analysis module. text is the main content of the Twitter post and it is used in text 

classification (Section 3.6.2  ) to estimate the tweet’s relevancy, while 

entities.media.media_url (periods should be interpreted as “has subfield”) refers to the link 

of an attached image and it is used in image classification (Section 3.6.1  ), again for 

relevancy estimation. created_at is the date when the post was published and 

geo.coordinates (if available) indicate the location where the tweet originated. Sometimes a 

tweet might exceed the maximum character limit and then a field named extended_tweet is 

included. In that case, subfields extended_tweet.full_text and 

extended_tweet.entities.media.media_url are used in text and image classification 

respectively. 
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Apart from the aforementioned important fields, there are also some fields that are not 

originally included in the JSON format of a consumed tweet, but are added later by our 

framework, in the context of beAWARE project. In particular, the Boolean field 

estimated_relevancy refers to the result of the multimodal classification, while the Boolean 

field relevant to the human annotation (Section 3.5 ). In order to decrease the response time 

of common queries to the database, is_retweeted_status defines whether the Object field 

retweeted_status exists or not. Finally, concepts are the extracted concepts during text 

classification and entities.media.dcnn_feature is the image feature vector during image 

classification. These are the fields that have been used so far to enrich the JSON structure of 

a Twitter post, in order to assist the analysis by making the information flow more efficient. 

Before we proceed with the analysis of the Twitter content and its classification as relevant 

or not, we create an annotated set of tweets, having binary classification values, so as to 

incorporate and avail of user feedback in the classification stage. The annotated set of 

tweets is used as a training set, to train the models so as to be able to classify the incoming 

streams of Twitter content. For the purposes of beAWARE we created an annotation tool, as 

described below. 

3.5  Data annotation and training set creation 

The classification procedure, which is described in the following section, needs training data, 

i.e. a set of labeled examples. So, it is necessary to have a large number of tweets that are 

characterized as relevant/irrelevant. This is a manual task and thus requires human effort, 

such as end users that will serve as annotators. To facilitate this effort, an online application 

has been implemented, aiming to present the collected tweets in a straightforward manner 

and to provide an easy way to annotate. In this section we present a detailed description of 

the online annotation tool of beAWARE, which has been used to initialize the training set for 

each language and pilot use case scenario considered. Our approach allows for regular 

updates of the training set for further improvements of the developed classification models. 

The homepage6 of the web tool (Figure 6) offers the end users the ability to select the type 

of Twitter posts that they would like to be displayed, based on two criteria: language, i.e. 

English, Greek, Italian, and Spanish, and pilot case, i.e. fire, flood, and heatwave. Each 

combination of language and pilot case defines a different collection of crawled tweets. In a 

minimal, but efficient way the users are able to set their preferences; first, by a drop-down 

list on the upper left corner of the website that provides all the available languages and then 

                                                      

6
 http://mklab-services.iti.gr/beAWARE_tweets  

http://mklab-services.iti.gr/beAWARE_tweets
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by clicking one of the three pilot buttons in the middle of the page. This will navigate to the 

presentation of the respective tweets. 

 

Figure 6: Data annotation tool – homepage 

Figure 7 depicts a set of tweets that are relative to floods and are written in Italian. As it can 

be easily seen, the page consists of two main components: a pagination header that also 

includes other useful utilities, and a panel of textboxes in vertical direction where each box 

displays a Twitter post. 

In order to avoid presenting thousands of tweets in a single page, the application gives a 

pagination option that divides the posts into pages of fifty. Using the left and right arrows 

inside the header, end users are able to navigate back and forth through pages, while the 

page numbering and the total number of tweets are always shown. In addition, there are 

two filtering options: posts can be filtered either by their date of creation, or by the 

existence of certain keywords inside their text. For the former, a date slider serves to define 

the time period during which posts were created and then pressing the reload button, which 

lies next to the slider, is necessary to return the new results. For the latter, users can type an 

unlimited number of words into a text input field on the upper right side of the header and 

by clicking on the magnifier icon or pressing the Enter key, results will be updated with 

tweets that contain at least one of the given words in their text. In order to switch use cases, 

the “Change pilot” button navigates back to the homepage, while switching languages is 

possible through the drop-down list that was previously described and is always visible in the 

annotation tool. In addition to this header, a more compact version of it, which includes only 

the pagination functionality, was added under the panel of tweets, according to feedback 

from real end users. 
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Figure 7: Data annotation tool – tweets presentation and buttons to annotate 

Regarding the crawled Twitter posts, they are represented by a list of boxes and they are 

sorted from most recent to oldest. For each tweet, a variety of information is available. In 

detail, the main text of the post, along with images or active links if existing, the username of 

the author, which links to the user account’s Twitter page, the time and date when the 

tweet was published, and a link to the original post in Twitter. Moreover, the colored border 

around each tweet indicates its relevancy to the pilot case as estimated by the multimodal 

classification framework (see Section 3.6 ) during the crawling phase. Green border refers to 

relevant texts and red violet border to irrelevant. 

Next to every tweet box there are two buttons that offer the core functionality of the 

described application. By clicking the “Relevant” or the “Irrelevant” button, users are able to 

annotate all posts and the annotation is instantly saved in the database where the crawled 

tweets are stored, as an extra field (see Section 3.4 ). When a tweet is already annotated, 
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then the corresponding button is colored, but it can always be changed. However, the 

relevancy of a post can only have one value, regardless of the annotator, so the latest 

selection overwrites a previous choice. 

In summary, the online annotation tool provides two basic functionalities; (i) a presentation 

of all crawled Twitter posts per language and pilot, together with filter options (e.g. getting 

tweets that were published in a specific date or that contain certain words), and (ii) a simple 

way to select if a tweet is relevant or not, thus creating the training set. The tool has already 

been used by Greek and Italian users, and since March 2017 more than 11,000 and 16,000 

tweets respectively have been successfully annotated. 

3.6  Social media multimodal classification 

Classification is the problem of identifying to which of a set of categories (i.e. classes) a new 

observation belongs to, on the basis of a training set of data containing observations whose 

class membership is known. It is a two-step process that involves the construction of a 

model by using a training set of the target category and then the application of the model 

for classifying previously unseen data. The algorithm that implements classification is known 

as a classifier, i.e. one function that maps one observation to a pre-defined class. Most 

algorithms describe an individual instance whose category is to be predicted using a feature 

vector that is comprised of measurable properties (i.e. features) of the instance. Features 

may be binary; categorical; integer-valued; or real-valued. In case the instance is an image, 

the feature values might correspond to the pixels of an image; if the instance is a piece of 

text, the feature values might be occurrence frequencies of different words.  

In beAWARE project, the first version of the social media monitoring module considers both 

visual and textual information, aiming to filter-out irrelevant social media posts. The 

relevance is estimated using both textual and visual (if available) information.  

In the sequel, we present an overview of the relevant work on visual and textual 

classification as well the framework applied for both cases, then an evaluation section 

follows which includes a short description of the datasets used, the experiments realized, 

the results produced and finally the conclusions drawn. 

3.6.1   Social media image classification 

Image classification involves the use of visual concept detection algorithms based on low-

level features and classifiers for deciding whether an image shows evidence of flood, fire or 

heatwave. In this section, we present an overview of state of the art methods for concept 

detection in images, and then we present the framework proposed within beAWARE. 
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Concept detection in images aims at annotating them with one or more semantic concepts 

(e.g. hand, sky) that are chosen from a pre-defined concept pool. Concept detection systems 

involve the extraction of visual features, the training of classifiers for each concept using a 

ground-truth annotated training set, and eventually, the application of the trained classifiers 

to unlabeled images, that return a set of confidence scores for the appearance of the 

different concepts in the shot. Thus, the first step is feature extraction and the second is the 

building of the classification model. 

Regarding feature extraction, it refers to the methods that aim at the description of the 

visual content of images. Visual descriptors can be divided in two main groups: hand-crafted 

and DCNN-based descriptors. Hand-crafted features can be further divided into global and 

local descriptors. Global descriptors capture global characteristics of the image and some 

indicative examples of global descriptors are the MPEG-7 descriptors, and the Grid Color 

Moments. Instead, local descriptors represent local salient points or regions and the most 

widely used are the SIFT descriptor (Lowe, 2004), and the SURF descriptor (Bay et al., 2008) 

and their variations. Usually, in the case of local descriptors a clustering algorithm is applied 

after the feature extraction in order to form a vocabulary of “visual words” that leads 

eventually to a global descriptor. The most known approaches for visual word assignment 

are the “bag-of-word” (BoW) representation (Qiu, 2002), the Fisher vector (Perronnin et al., 

2010) and the VLAD (Jegou et al., 2010).  As far as the DCNN-based features are concerned, 

they are the most recent trend in feature extraction and image representation and they 

seem to outperform the hand-crafted features in most applications. They learn features 

directly from the raw image pixels using Deep Convolutional Neural Networks (DCNNs), 

which consist of many layers of feature extractors and can be used both as standalone 

classifiers, i.e., unlabeled images are passed through a pre-trained DCNN that performs the 

final class label prediction directly, or as generators of image features, i.e., the output of a 

hidden layer of the pre-trained DCNN is used as a global image representation (Simonyan, 

2014; Markatopoulou, 2015). The latter type of features is referred to as DCNN-based and 

they are usually preferred due to their high performance both in terms of time and accuracy. 

Several DCNN software libraries are available, e.g., Caffe (Jia, 2014), MatConvNet (Vedaldi, 

2015), and different DCNN architectures have been proposed, e.g., CaffeNet (Krizhevsky, 

2012), GoogLeNet (Szegedy, 2015). 

Classification step is the second step of the multimedia concept detection process, and it 

involves the construction of models by using the low-level visual features, and then the 

application of these models for image labelling. Common classifiers that are used for 

learning the associations between the image representations and concept labels are the 

Support Vector Machines (SVM) and Logistic Regression (Markatopoulou, 2015). SVMs are 

trained separately for each concept, on ground-truth annotated corpora, and when a new 
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unlabeled video shot arrives, the trained concept detectors will return confidence scores 

that show the belief of each detector that the corresponding concept appears in the shot.  

beAWARE framework 

In the employed framework, we trained a 22-layer GoogLeNet network (Szegedy, 2015) on 

5055 ImageNet concepts (Pittaras, 2017), which are a subset of the 12,988 ImageNet 

concepts. The subset of the 5055 concepts was produced by considering the tree structure 

of the ImageNet and the following assumptions: a) concepts that were very similar were 

merged, for example all different dog breeds (e.g. Shih-Tzu, Pekinese, Maltese dog) were 

removed and only the concept dog was kept. The same philosophy was followed for other 

animals and plants as well, b) concepts that correspond to scientific terms were removed, 

for example biological terms such as eukaryote, prokaryote, sporozoite etc., and c) concepts 

with very few number of positive images were removed. Then, this network was applied on 

the TRECVID SIN 2013 development dataset and we used as a feature (i.e., a global image 

representation) the output of the last pooling layer with dimension 1024. In the sequel, we 

used the annotated dataset for training and validating an SVM classifier per concept (i.e. 

flood, heatwave, fire). It should be noted that the SVM classifiers were tuned by setting 

different t and g values in order to achieve maximum performance. t parameter in SVM 

classifier defines the kernel type, while g stands for the gamma in the kernel function. It 

should be noted that apart from the DCNN-based features, several other features were 

evaluated as well, including acc, gabor.  

The beAWARE image classification module is evaluated in two data collections, which 

involve visual and textual information, in Section 3.6.3   below, after the discussion on the 

state of the art in text classification in Section 3.6.2  . 

3.6.2   Social media text classification 

Social media text classification involves the use of text classifiers that consider textual 

features for deciding whether an image show evidence of flood, fire or heatwave. In this 

section, we present an overview of state of the art methods for text classification, then we 

present the framework proposed as well as some directions for the following version of the 

beAWARE social media text classification module.  

Text classification is the assignment of natural language texts into one or more categories/ 

classes drawn from a predefined set according to their content. Text classification involves 

the following series of steps:  

1. Document collection, which involves the collection of data stored in several formats such 

as doc, html. 
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2. Preprocessing, which converts the original text data in a data-mining-ready structure, 

where the most significant text-features that serve to differentiate between text-

categories are identified. Commonly, the steps involved are tokenization, where each 

document is partitioned into a list of tokens, stop word removal, that involves of removal 

of frequently occurring words (e.g. and, the), and word stemming, which reduces words 

to their root form.  

3. Text representation (Yan, 2009), which models documents and transforms them into 

numeric vectors.  The most commonly used text representation model is the Vector 

Space Model (VSM) where documents are represented by vectors of words. One of the 

commonly used VSM is the Bag of Words model (BOW) which uses all words appeared in 

the given document set D as the index of the document vectors. Different term 

weighting schemas were proposed under the BOW model that gives different text 

representation results. The simplest case of BOW is the Boolean model, where binary 

vectors represent documents. Extensions of the Boolean model is the Term Frequency 

model (TF) that uses the frequency of the terms, and the Term Frequency Inversed 

Document Frequency (TFIDF) model, which uses real values that capture the term 

distribution among documents to weight terms in each document vector. However, both 

TF and the TFIDF model have certain limitations such as the fact that they cannot capture 

polysemy and synonymity as well as the semantics of the documents. Later, more 

advanced text representation strategies have been proposed including the N-gram 

statistical language models that were proposed to capture the term correlation within 

document. However, the exponentially increasing data dimension with the increase 

of N limits the application of N-gram models. The Latent Semantic Indexing (LSI) was 

proposed to reduce the polysemy and synonym problems. One of the latest approaches 

that seems to outperform the other methods in many cases, is word2vec. Specifically, 

Mikolov et al. (2013) proposed novel architectures and models for producing word 

embeddings (i.e. representation of words from a given vocabulary as vectors in a low-

dimensional space), based on deep neural networks (NN), namely the Continuous Bag-

of-Words (CBOW) and the Skip-gram models, which are also referred as word2vec. 

CBOW and Skip-gram models are trained first on a large corpus, taking into consideration 

the neighbouring words in a sentence. The context size one can take into consideration is 

specified by a parameter called window size. In the CBOW architecture, the NN model 

tries to predict a word given the context of this word, whereas in the Skip-gram 

architecture, the exactly opposite function is executed, that is, given a word the NN 

model tries to predict the context of a word. Regarding the quality of these vectors, it is 

proved that these methods can capture very efficiently the semantics of the words. 

4. Feature selection methods (Aggarwal, 2012; Chandrashekar, 2014), that are used for 

reducing the dimensionality of the dataset by removing features that are considered 
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irrelevant for the classification. The aim of these methods is to select a subset of 

variables from the input which can efficiently describe the input data while reducing 

effects from noise or irrelevant variables and still provide good prediction results. 

Feature selection techniques can be classified into two basic categories: filtering 

techniques and wrapper techniques. Filter methods act as preprocessing to rank the 

features wherein the highly ranked features are selected and applied to a predictor. In 

wrapper methods the feature selection criterion is the performance of the predictor i.e. 

the predictor is wrapped on a search algorithm which will find a subset which gives the 

highest predictor performance. In general, wrapper methods have low complexity, 

whereas wrapper methods have higher time complexity and accuracy than filter 

methods. Some filtering methods are the Document Frequency (DF), Information Gain 

(IG), and Mutual Information (MI). Some wrapper methods are Sequential Forward 

Selection (SFS), Sequential Backward Selection (SBS) and Neural Networks. 

5. Classification Algorithms, which are used to model classes and label text. There are 

several methods used to classify text such as Support Vector Machine, Naive Bayes 

Classifier and Decision Trees. 

The aforementioned text classification methods are applied to documents of normal length. 

However, unlike normal documents, short texts that are available in many application areas, 

such as Instant Messages, online Chat Logs, Bulletin Board System Titles, and Twitter are 

usually noisier, less topic-focused, and (way more) shorter, that is, they consist of from a 

dozen words to a few sentences, and finally they contain many non-standard terms. Because 

of the short length, they do not provide enough word co-occurrence or shared context for a 

good similarity measure (Song, 2014). Therefore, traditional machine learning methods, such 

as SVM, Bayes and K-NN, which rely on the word frequency, tend not to perform as good. 

Thus, new classifying methods on short text started to appear, such as sematic analysis, 

semi-supervised short text classification, ensemble models for short text, and real-time 

classification in order to deal with the problem of short text classification. Popular 

methodologies (Song, 2014) used for short text classification include short text classification 

using sematic analysis, semi-supervised short text classification, ensemble short text 

classification, and real-time classification. Due to the extensive use and increase of 

popularity of Twitter, a number of methods have been proposed that focus on tweet 

classification (Selvaperumal, 2014). Some ideas that were proposed for tweet classification 

are the following: the use of emoticons, the use of a network algorithm that classifies tweets 

based on finding the similar trend topics, the application of data compression, the use of 

tweet features like URL’s, the retweeted tweets and the influential users tweet, the use of 

Wikipedia and wordnet to cluster short texts and others methods.  
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Apart from the (short) text classification approaches discussed above, it is possible to 

conclude whether a document belongs to a specific class by calculating its similarity with the 

instances (e.g. tweets) that belong to the class. There are a number of string similarity 

measures that estimate the similarity between two sequences of strings. The most popular 

term-based distance measures are the following: Block distance which is known as 

Manhattan distance, the cosine similarity, the Dice’s coefficient, the Euclidean distance, the 

Jaccard Similarity, the Overlap coefficient and the Matching coefficient (Vijaymeena, 2016). 

The maximum of the similarity or minimum distance calculated between the query 

document and the set of documents belonging to the class of interest is compared to a 

threshold value that is defined empirically in order to decide whether the query document 

belongs or not to the specific class. 

beAWARE framework 

In the employed framework, we evaluated several methods belonging to the traditional text 

classification, as well as the Jaccard similarity method. Thus, for the traditional text 

classification we approach each of the aforementioned steps as follows: 

1. We collect short text messages from Twitter, as already described in Section 3.2. 

2. We pre-process the collected text in the following ways: 

a) We apply DBpedia Spotlight in order to automatically annotate it with respective 

DBpedia resources (Daiber, 2013). It should be noted that DBpedia resources have 

underlying semantics, however currently they are treated as plain words. It is 

possible that we consider this information in next version of the module. 

b) We remove punctuation and all non-characters, as well as stop words from the 

collected text and finally we do word stemming.  

3. As far as text representation is concerned, we tested Term Frequency (TF), TFIDF and 

word2vec. Various experiments were realized for different feature length and n-gram 

values (i.e. n-gram = 1 or 2) for the first two representation methods, and different 

corpus and vector dimensions for the third method. 

4. We do not apply feature selection in the current version of the text classification 

module. 

5. We serve each text feature vector as input to a classifier (i.e. SVM, Naïve Bayes or 

Random Forests) which is tuned in order to achieve maximum performance. The textual 

feature vector is constructed using either DBpedia concepts or raw text, so as to 

examine which is the most suitable representation in the context of beAWARE. 
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Regarding the Jaccard similarity approach, we follow the same collection (step 1) and 

preprocessing (step 2) steps as the ones realized in the traditional text classification method. 

However, in the sequel we compute for each text representation (i.e. DBpedia concepts, text 

with stop words removed, and text with stop words removed and with word stemming) the 

Jaccard similarity coefficient between the new text description and each positively 

annotated text description, using the mathematical formula 𝐽(𝑊𝑞 , 𝑊𝑡𝑛
) =  

|𝑊𝑞∩𝑊𝑡𝑛|

|𝑊𝑞∪ 𝑊𝑡𝑛|
, where 

𝑊𝑞 stands for the set of terms of the new text description, and 𝑊𝑡𝑛
 for the set of terms of 

the n text description of the positively annotated dataset tests. Then the maximum value of 

the Jaccard similarity coefficients was compared to a threshold defined empirically in order 

to determine whether the new text description will be considered as positive or not. 

Specifically, if the similarity was greater than the selected threshold the new instance was 

considered as positive.  

Finally, we should note that although the text used in beAWARE is retrieved from Twitter, in 

the current, baseline version of the text classification, we used traditional methods followed 

for normal length documents. However, it is expected that in the next versions, methods 

that consider the particular characteristics of tweets will be evaluated. 

3.6.3   Evaluation 

In this section we evaluate the frameworks proposed in two different datasets. Thus, we 

initially present the datasets and then present the experimental results for various features 

and classifiers applied. It should be noted that both textual and visual classification modules 

were developed and tested for the flood concept and similar behaviour is expected in the 

other two use cases of fire and heatwave events. 

Dataset Description 

The datasets, which were used for developing and evaluating both the visual and textual 

classification modules, are: 

 the MediaEval 2017 dataset for the Multimedia Satellite Task7  

 the beAWARE dataset 

Regarding the MediaEval 2017 dataset, it was provided within the context of the Disaster 

Image Retrieval from Social Media (DIRSM) subtask which goal was to identify all images 

which show direct evidence of a flooding event from social media streams, independently of 

a particular event. It should be noted that within the context of DIRSM subtask a set of visual 

                                                      

7
 https://multimediaeval.github.io/2017-Multimedia-Satellite-Task/  

https://multimediaeval.github.io/2017-Multimedia-Satellite-Task/
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descriptors were also precomputed and provided to the contesters which were acc, gabor, 

fcth, jcd, cedd, eh, sc, cl, and tamura. These descriptors were evaluated during the building 

of the visual classifier. The dataset comprises of 5,280 images, 1,920 of which are annotated 

as true and 3,360 as false regarding the flood event. For evaluation purposes the dataset 

was split into two subsets; a training and a validation set that contained 3,520 and 1,760 

images respectively. Table 2 contains the statistics of the MediaEval dataset. 

Regarding the beAWARE dataset, it is constructed from the tweets retrieved by the social 

media crawling module (section 3.3 ). Since the focus in the first version of the social media 

classification module is on the flood concept, the beAWARE dataset used contains tweets in 

Italian that are related to the flood event. Thus, a significant effort was realised on behalf of 

the Italian partners of the beAWARE and a considerable number of tweets were annotated 

to aid in the classifier development. Specifically, 11,931 tweets were annotated, 5,171 of 

which are annotated as true and 6,760 as false regarding the flood event. Table 3 contains 

the statistics of the beAWARE dataset. However, it should be noted that the annotation 

realised by the beAWARE partners refers both to the text and image (if available) of the 

tweet and thus, it is often that while a tweet is relevant to flood event, the image included to 

be irrelevant, which affects eventually the evaluation metrics. 

 

Annotation for concept ‘flood’ 

Sum True False 

Train set 1,280 2,240 3,520 

Validation set 640 1,120 1,760 

Total Records 1,920 3,360 5,280 

Table 2: Statistics of MediaEval 2017 dataset 

 

Annotation for concept 
‘flood’ 

Sum True False 

All  5,171 6,760 11,931 

Only Text 4,261 5,989 10,250 

Only Text (duplicates removed) 4,204 5,859 10,063 

Text + Image 910 771 1,681 

Text  + Image (Image exists) 855 739 1,594 

Table 3: Statistics of beAWARE dataset 

Experiments 

In order to evaluate the quality of the classification system the metrics that used in mostly 

are precision, recall, and fscore. These metrics are calculated in every run in order to decide 

the best performing classification method. 
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Social media image classification 

In order to find the best performing feature and classifier for identifying images that contain 

evidence of flood, several features were tested and the parameters of SVM classifiers were 

tuned in order to maximise their performance. Specifically, as far as the MediaEval dataset is 

concerned, the following features were tested acc, gabor, fcth, jcd, cedd, eh, sc, cl, and 

tamura that were provided for the Multimedia-Satellite challenge and the DCNN-based 

features. Moreover, SVM classifiers were trained for all of these features for different t and 

g parameters and results showed that the proposed DCNN feature outperformed most of 

them significantly. Table 4 contains the evaluation metrics for the MediaEval dataset for the 

different visual descriptors and SVM classifiers. After inspecting Table 4, we can deduce that 

the best results are obtained for the DCNN-based features for t = 1 (polynomial function) 

and g = 0.5 or g = 0,03125.  

Descriptor 

SVM 
Parameters 

Precision Recall Accuracy Fscore t g 

acc 1 0,00125 0,5827 0,3359 0,6710 0,4262 

acc 1 0,03125 0,5359 0,1516 0,6438 0,2363 

acc 1 0,5 0,4830 0,1328 0,6330 0,2083 

acc 2 0,5 0,6739 0,0484 0,6455 0,0904 

cedd 1 0,00125 0,6427 0,5453 0,7244 0,5900 

cedd 1 0,03125 0,6085 0,5391 0,7063 0,5717 

cedd 1 0,5 0,5925 0,3953 0,6813 0,4742 

cedd 2 0,5 0,8250 0,0516 0,6511 0,0971 

cl 1 0,00125 0,6005 0,3500 0,6790 0,4423 

cl 1 0,03125 0,6115 0,3641 0,6847 0,4564 

cl 1 0,5 0,5957 0,3016 0,6716 0,4004 

cl 2 0,5 0,6600 0,5156 0,7273 0,5789 

eh 1 0,00125 0,6935 0,4703 0,7318 0,5605 

eh 1 0,03125 0,6682 0,4688 0,7222 0,5510 

eh 1 0,5 0,6605 0,4469 0,7153 0,5331 

eh 2 0,5 0,2500 0,0031 0,6341 0,0062 

fcth 1 0,00125 0,6146 0,4609 0,6989 0,5268 

fcth 1 0,03125 0,5956 0,4625 0,6903 0,5207 

fcth 1 0,5 0,5000 0,2578 0,6364 0,3402 

fcth 2 0,5 NaN 0,0000 0,6364 0,0000 

gabor 1 0,00125 NaN 0,0000 0,6364 0,0000 

gabor 1 0,03125 NaN 0,0000 0,6364 0,0000 

gabor 1 0,5 NaN 0,0000 0,6364 0,0000 

gabor 2 0,5 NaN 0,0000 0,6364 0,0000 

jcd 1 0,00125 0,6465 0,5516 0,7273 0,5953 

jcd 1 0,03125 0,6388 0,5250 0,7193 0,5763 
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jcd 1 0,5 0,6025 0,3719 0,6824 0,4599 

jcd 2 0,5 NaN 0,0000 0,6364 0,0000 

sc 1 0,00125 0,2381 0,0078 0,6301 0,0151 

sc 1 0,03125 1,0000 0,0016 0,6369 0,0031 

sc 1 0,5 0,2500 0,0016 0,6352 0,0031 

sc 2 0,5 0,3900 0,0609 0,6239 0,1054 

tamura 1 0,00125 0,2500 0,0031 0,6341 0,0062 

tamura 1 0,03125 0,5246 0,0500 0,6381 0,0913 

tamura 1 0,5 0,3913 0,0141 0,6335 0,0271 

tamura 2 0,5 0,5455 0,0094 0,6369 0,0184 

dcnn-based 1 0,00125 0,8192 0,8000 0,8631 0,8095 

dcnn-based 1 0,03125 0,8195 0,8016 0,8636 0,8104 

dcnn-based 1 0,5 0,8195 0,8016 0,8636 0,8104 

dcnn-based 2 0,5 0,9000 0,0141 0,6409 0,0277 

Table 4: Evaluation of visual features and classifiers in MediaEval dataset 

As far as the beAWARE dataset is concerned, we tested the DCNN-based feature and the 

SVM classifier with t = 1 and g = 0.5 that performed best in the MediaEval dataset and the 

evaluation metrics can be found in Table 5. However, it is evident that the recall achieved by 

applying the visual classification method in the beAWARE dataset is rather low, which leads 

to a low F-score as well. In order to discover, the reasons behind such low recall, a more 

detailed annotation of the images of beAWARE dataset is required. This will reveal whether 

the low performance is actually false or it is accurate and the visual classifier will need 

retraining by considering also images of the beAWARE dataset. 

 
Descriptor 

SVM 
Parameters 

Precision Recall Accuracy Fscore t g 

dcnn-based 1 0,5 0,7139 0,2738 0,5461 0,3957 

Table 5: Evaluation of visual features and classifiers in beAWARE dataset 

Social media text classification 

The first method evaluated for text classification uses the Jaccard Similarity Coefficient. 

Figures Figure 8: Evaluation of Jaccard Similarity method for MediaEval dataset 

 and Figure 9: Evaluation of Jaccard Similarity method for beAWARE dataset 

 depict the F-score values for the MediaEval and beAWARE datasets accordingly for different 

text input and different values of the e parameter.  
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Figure 8: Evaluation of Jaccard Similarity method for MediaEval dataset 

 

Figure 9: Evaluation of Jaccard Similarity method for beAWARE dataset 

After a careful observation of the two figures, we can conclude that for the Jaccard method 

the use of DBpedia concepts slightly improves the classification performance. However, it 

should be noted that especially for the MediaEval dataset the Jaccard method is performing 

satisfactorily.  
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Moreover, it is evident that the method has good results for very low values of the e 

parameter, i.e. around 0.1 and drops significantly after that value. The main disadvantage of 

the Jaccard method is that it is rather slow compared to the other methods, given that the 

new text must be compared against all positively annotated texts in order to determine its 

relevancy with them. However, since the text classification method is part of the social 

media monitoring pipeline that is triggered very regularly (usually around 1 second), it is not 

considered an optimal solution. 

In the sequel, the methods using classifiers are evaluated. In all cases three classifiers are 

tested for a set of parameters, which can be found in Table 6. For the remaining parameters, 

default values are used. Moreover, regarding the methods using TF and TFIDF 

representation different n-gram values and min_df values are considered during text 

vectorization. The min_df value affects the size of the feature length since it ignore terms 

that have a document frequency strictly lower than the given threshold when building the 

vocabulary. Specifically, n-gram parameter can be either 1 or 2, while min_df can be 0.0001, 

0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01 or 0.02. 

Classifiers Parameters 

SVM 
Penalty parameter: 0.01, 0.1, 1.0, 2.0, 3.0, 4.0, 5.0 
Kernel type: rbf, poly 

Naïve Bayes Additive smoothing parameter: 0.01, 0.1, 1.0 

Random Forests 
Number of trees in the forest: 10, 50, 100, 200, 500, 1000 
Number of features used for best split: auto, log2, sqrt, None 

Table 6. Classifier parameters 

Table 7 and Table 8 contain the best results of the TF representation method for each 

different classifier for different text inputs for the datasets MediaEval and beAWARE 

correspondingly.  

n-gram Text input Classifier Precision Recall F-score 

1 Without stop words SVM 0,85938 0,83125 0,78740 

Naïve Bayes 0,71406 0,82500 0,74795 

Random Forest 0,90000 0,84886 0,81241 

Without stop words & with 
stemming 

SVM 0,48438 0,75057 0,58546 

Naïve Bayes 0,60313 0,79659 0,68319 

Random Forest 0,76563 0,82727 0,76324 

DBPedia concepts SVM 0,35781 0,70000 0,46450 

Naïve Bayes 0,50156 0,75000 0,59335 

Random Forest 0,66250 0,75852 0,66614 

2 Without stop words SVM 0,84688 0,82614 0,77986 

Naïve Bayes 0,74844 0,83011 0,76213 

Random Forest 0,89531 0,85227 0,81508 
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Without stop words & with 
stemming 

SVM 0,45156 0,74432 0,56226 

Naïve Bayes 0,61094 0,79602 0,68536 

Random Forest 0,75156 0,82727 0,75987 

DBPedia concepts SVM 0,36406 0,70170 0,47023 

Naïve Bayes 0,50156 0,75114 0,59444 

Random Forest 0,65625 0,76136 0,66667 

Table 7. Evaluation of TF representation method for MediaEval dataset. 

n-gram Text input Classifier Precision Recall F-score 

1 Without stop words SVM 0,86066 0,23299 0,36671 

Naïve Bayes 0,84712 0,47337 0,60735 

Random Forest 0,81124 0,53402 0,64407 

Without stop words & with 
stemming 

SVM 0,87413 0,18491 0,30525 

Naïve Bayes 0,84851 0,45155 0,58943 

Random Forest 0,81081 0,54364 0,65087 

DBPedia concepts SVM 0,91449 0,19379 0,31980 

Naïve Bayes 0,83220 0,36132 0,50387 

Random Forest 0,77309 0,46117 0,57772 

2 Without stop words SVM 0,85795 0,22559 0,35725 

Naïve Bayes 0,85014 0,44896 0,58761 

Random Forest 0,82090 0,52885 0,64327 

Without stop words & with 
stemming 

SVM 0,87701 0,18195 0,30138 

Naïve Bayes 0,85514 0,42788 0,57037 

Random Forest 0,82659 0,50592 0,62767 

DBPedia concepts SVM 0,91956 0,18602 0,30944 

Naïve Bayes 0,83795 0,35762 0,50130 

Random Forest 0,74461 0,47226 0,57796 

Table 8. Evaluation of TF representation method for beAWARE dataset 

The same applies to Tables Table 9 and Table 10 which contain the best results of the TFIDF 

representation method.   

n-gram Text input Classifier Precision Recall F-score 

1 Without stop words SVM 0,71120 0,82344 0,76322 

Naïve Bayes 0,76311 0,65938 0,70746 

Random Forest 0,73359 0,89063 0,80452 

Without stop words & with 
stemming 

SVM 0,69727 0,43906 0,53883 

Naïve Bayes 0,77186 0,56563 0,65284 

Random Forest 0,76973 0,74688 0,75813 

DBPedia concepts SVM 0,66462 0,33750 0,44767 

Naïve Bayes 0,69752 0,48281 0,57064 

Random Forest 0,69581 0,59688 0,64256 

2 Without stop words SVM 0,70572 0,80938 0,75400 

Naïve Bayes 0,76056 0,67500 0,71523 
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Random Forest 0,74443 0,88750 0,80969 

Without stop words & with 
stemming 

SVM 0,69825 0,43750 0,53794 

Naïve Bayes 0,77419 0,56250 0,65158 

Random Forest 0,76056 0,75938 0,75997 

DBPedia concepts SVM 0,66875 0,33438 0,44583 

Naïve Bayes 0,70000 0,48125 0,57037 

Random Forest 0,66831 0,63594 0,65172 

Table 9. Evaluation of TFIDF representation method for MediaEval dataset. 

n-gram Text input Classifier Precision Recall F-score 

1 Without stop words SVM 0,24186 0,60738 0,37727 

Naïve Bayes 0,50444 0,70267 0,62526 

Random Forest 0,52071 0,70940 0,63797 

Without stop words & with 
stemming 

SVM 0,20488 0,59356 0,33144 

Naïve Bayes 0,48521 0,69613 0,61094 

Random Forest 0,52256 0,71086 0,63995 

DBPedia concepts SVM 0,20118 0,60129 0,32910 

Naïve Bayes 0,32988 0,64552 0,47497 

Random Forest 0,71006 0,59608 0,63085 

2 Without stop words SVM 0,23151 0,60556 0,36597 

Naïve Bayes 0,48558 0,70104 0,61499 

Random Forest 0,55806 0,71395 0,65737 

Without stop words & with 
stemming 

SVM 0,19970 0,59102 0,32442 

Naïve Bayes 0,46043 0,69194 0,59512 

Random Forest 0,54882 0,71158 0,65173 

DBPedia concepts SVM 0,17825 0,59285 0,29854 

Naïve Bayes 0,37426 0,65504 0,51331 

Random Forest 0,70932 0,59572 0,63040 

Table 10. Evaluation of TFIDF representation method for beAWARE dataset. 

Regarding the word2vec methodology several runs were realised for different vector 
dimension (i.e. 100, 200, 300, 400, 500), words window (i.e. 2, 3) and training algorithm (i.e. 
0, 1) parameters.  Tables Table 11 and Table 12 contain the best results of the word2vec 
method for the MediaEval and beAWARE datasets correspondingly. For all cases, the 
highlighted rows are the ones with the best results for each table. The sizes of the of the 
corpara used are 6,600 records for the mediaEvalEnglishFloods_corpus, around 830,000 
records for the beAwareEnglishFloods_corpus and 15,000 for the 
beAwareItalianFloods_corpus. It is evident that for the case of the MediaEval dataset where 
two different corpus are used, the bigger corpus with around 830,000 records achieves 
better performance. 

Text input Corpus 

Vector 
dimension 

Words 
windows 

Training 
algorithm 

Pre
cisi
on 

Recall Fscore 

text with mediaEvalEnglishFl 100 3 1 0,75 0,745 0,751
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stop words 
removed 

oods_corpus 835 31 77 

text with 
stop words 
removed 

beAwareEnglishFlo
ods_corpus 

200 3 0 0,79
341 

0,828
13 

0,810
40 

text with 
stop words 
removed + 
stemming 
applied 

mediaEvalEnglishFl
oods_corpus 

100 3 1 
0,76
167 

0,714
06 

0,737
10 

text with 
stop words 
removed + 
stemming 
applied 

beAwareEnglishFlo
ods_corpus 

200 3 0 
0,77
647 

0,825
00 

0,800
00 

DBPedia 
concepts 

mediaEvalEnglishFl
oods_corpus 

100 2 1 
0,75
455 

0,778
13 

0,766
15 

DBPedia 
concepts 

beAwareEnglishFlo
ods_corpus 

[100 – 500] [2,3] [0,1] 
0,86
667 

0,020
31 

0,039
69 

Table 11. Evaluation of word2vec representation method for MediaEval dataset. 

Text input Corpus 
Vector 

dimension 
Words 

windows 
Training 

algorithm 
Precision Recall Fscore 

text with 
stop words 
removed 

beAwareItalian 
Floods_corpus 100 3 1 0,95855 0,06842 0,12772 

text with 
stop words 
removed + 
stemming 
applied 

beAwareItalian 
Floods_corpus [100 – 500] [2,3] [0,1] nan 0,00000 0,00000 

DBPedia 
concepts 

beAwareItalian 
Floods_corpus [100 – 500] [2,3] [0,1] nan 0,00000 0,00000 

Table 12. Evaluation of word2vec representation method for beAWARE dataset. 

The best runs from all tables along with information concerning the text representation 

parameters and the classifier parameters can be found in Table 13. After a careful 

observation, we can deduce that for the MediaEval dataset the best performing method is 

the TF method while for the beAWARE is the TFIDF method. The performance of the two 

methods is comparable within the same dataset, since for the beAWARE dataset the Fscore 

of TF method is 0,65 and the Fscore of the TFIDF method is 0,657 while for the MediaEval 

dataset the Fscore of TF method is 0,815 and the Fscore of the TFIDF method is 0,809. 

However, we observe a significant difference in the Fscore between the two datasets. This is 

most probably due to the special characteristics of the Twitter text such as the limited 

length, the use of non-standard terms and possible grammatical errors which require more 

advanced processing and representation techniques. However, for the current version of the 
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system and given that the dataset of interest is the beAWARE, we will proceed with using 

the TFIDF method for the text classification module, as the best performing examined 

approach. Finally, as far as the word2vec method is concerned, while it works satisfactory for 

the MediaEval dataset, it fails in the beAWARE dataset. A possible explanation for such low 

performance is a low quality of the corpus used for the word2vec representation as well a 

rather small size that does not cannot produce a good vector space. Thus, the use of a larger 

corpus of around 100,000 records will be examined in the next version. 

Method Dataset Text Input Parameters 
Classifiers & Classifier 
parameters Precision Recall Fscore 

TF beAWARE 

text with stop 
words removed  
+ stemming 
applied 

n-gram = 1 
min_df = 0,001 
features length = 1313 

Random Forest 
{Features num for 
best split: auto 
Number of trees: 
1000} 0,81081 0,54364 0,65087 

TF MediaEval 

text with stop 
words removed 

n-gram = 2 
min_df = 0,003 
features length = 1068 

Random Forest 
{ Features num for 
best split: auto 
Number of trees: 200} 0,74804 0,89531 0,81508 

TFIDF beAWARE 

text with stop 
words removed 

n-gram = 2 
min_df = 0,001 
features length = 2762 

Random Forests 
{ Features num for 
best split: auto 
Number of trees: 200} 0,79968 0,55806 0,65737 

TFIDF MediaEval 

text with stop 
words removed 

n-gram = 2 
min_df = 0,003 
features length = 1068 

Random Forest 
{ Features num for 
best split: auto 
Number of trees: 500} 0,74443 0,88750 0,80969 

word2vec beAWARE 

text with stop 
words removed 

corpus = 
beAwareItalianFloods
_corpus 
vector dimension = 
100 
words window = 3 
training algorithm = 1 

SVM 
{Penalty parameter: 
5.0 
Kernel type: rbf} 0,95855 0,06842 0,12772 

word2vec MediaEval 

text with stop 
words removed 

corpus = 
beAwareEnglishFloods
_corpus 
vector dimension = 
200 
words window = 3 
training algorithm = 0 

SVM 
{Penalty parameter: 
5.0 
Kernel type: rbf} 0,79341 0,82813 0,81040 

Table 13. Best parameters from TF, TFIDF, word2vec text classification methods. 

3.7  Integration of the social media module into the beAWARE system 

The social media monitoring framework is a module that runs constantly and makes use of 

real-time data. For reasons of demonstration, we have developed a single page web 
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interface8 that serves to initiate the framework’s procedure at a specific time, for a specific 

dataset. As it can be seen in Figure 10: Screenshot of the demonstration tool 

, the left side contains a set of simulated tweets that have been proposed by beAWARE user 

partners. These tweets were actually posted in Twitter and successfully crawled. To initiate 

the process of the social media module, the “Insert to DB” button has to be clicked. After the 

workflow (described in Section 3.1 ) is completed, the tweets that were estimated as 

relevant and were sent to BUS will be displayed on the right side. Clicking the “Empty the 

DB” button will clear the consumed tweets and it will be able to repeat the demonstration. 

 

Figure 10: Screenshot of the demonstration tool 

 

                                                      

8
 mklab-services.iti.gr/beAWARE_demo/ 

http://mklab-services.iti.gr/beAWARE_demo/


   D4.1 – V1.0  

 

Page 37 

4 MULTIPLE SENSING PLATFORMS 

Situational awareness is crucial to make decisions. One source of information in a crisis 

situation is the sensor network that is available in the area of operation. For a decision 

support system to be able to use the data from these sensors, it needs a unified way to 

access not just the data from a multitude of different types of sensors, but also the meta-

data about these sensors. 

4.1  Sensor Types 

There are several ways to classify sensors from the point of view of the beAWARE platform: 

 Online / Offline: Online sensors perform measurements and transmit their readings 

to the system without human intervention. Offline sensors require human 

intervention before their readings become available to the system. 

 Remote / in-, ex-situ: Remote sensors observe the subject from a distance, while in-

situ and ex-situ sensors need to be located at the same location as the observed 

subject. In the case of in-situ measurements the sensor can be brought to the 

subject, in the case of ex-situ measurements the subject, or a sample of the subject, 

has to be brought to the sensor (usually, for an analysis in laboratory). 

 Machine-interpretable data / Non machine-interpretable data: Machine-

interpretable data can be processed by the system without human intervention. Non 

machine- interpretable data requires a human to interpret the data. 

In the beAWARE platform, not all combinations of the above classifications are present. So 

far, the following four classifications of sensors have been identified to be most relevant for 

the beAWARE platform: 

 Online, in-situ, machine interpretable (e.g. Weather stations, water level gauges) 

 Offline, in-situ, machine interpretable (e.g. Manual water level measurements) 

 Offline, remote, machine interpretable (Satellite / drone based sensors, etc.) 

 Offline, in-, ex-situ, Non machine interpretable (Photos, observation notes, etc.)  

Besides these actual sensors, mathematical models can also be seen as virtual sensors. 

Depending on the way the models are integrated into the beAWARE platform, they can be 

classified as online or offline. An example of an online, virtual sensor is the weather forecasts 
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software of the Finnish Meteorological Institute (FMI). Also the image and video analysis 

components can be seen as virtual sensors. 

4.2  Data Types 

The classes of sensors described above can produce a range of different types of data that 

are stored in different ways. The main types of data relevant for the beAWARE project are: 

• Time series 

• Geospatial Coverages (one-off or series) 

• Images and video 

4.2.1   Time series 

Time series are measurements of the same observed property (OGC, 2011), for instance the 

temperature, taken at a more-or-less regular interval, for instance every hour. They can be 

taken by a sensor with either a fixed location (fixed-point), or by a moving sensor (moving 

point). 

Fixed-point time series are generated by, for instance, the automatic water-level gauges, 

maintained by the Alto Adriatico Water Authority (AWAA) in the Vicenza region, or the 

national weather stations available throughout Europe. These sensors are located in-situ, 

and generate data at a fixed time interval. 

Moving-point time series are generated by sensors that can be hand-held, or mounted on a 

vehicle or drone, and have a different location for each measurement. The GPS receivers of 

the first-responders are an example of this type. 

Both types of time series are typically stored in servers that implement the OGC Sensor 

Observation Service standard (SOS; OGC, 2012), or the OGC SensorThings API standard 

(Liang, 2016; OGC, 2016). 

4.2.2   Geospatial Coverages 

Geospatial coverages are typically generated by satellite-, aircraft- or drone-based sensors, 

or by mathematical models for spatial interpolation. They are images, where each pixel 

represents a measured (or processed) value of an observed property for a certain 

geographical region. Depending on the exact sensor type, a pixel can represent a region of a 

few square meters, up to many square kilometres. Typically, geospatial coverage data is 

served using a Web Map Service (WMS; OGC, 2006) or Web Coverage Service (WCS; OGC, 

2012-2) like Geoserver (GeoServer, 2017). 
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4.2.3   Images, video and text 

This class covers all the non-machine-interpretable data types. Examples are photos, videos 

and text messages sent by first-responders or the public. The beAWARE platform will not 

directly be able to interpret these data, and first stores the files as they are. The image and 

video analysis components will extract as much information from the files as possible, but 

the end-user may still want to review the original. The system can present the availability of 

media files at relevant points in the platform, depending on the available metadata. For 

instance, if the geolocation of the recording is available, the platform can show the 

availability of the data as icons on a map. If the data consists of image files, the platform can 

display the image, with any automatic analysis results once they are available. 

4.3  Pilots 

The different pilots in the beAWARE project cover different types of extreme weather events 

and thus employ different types of sensors. Since the pilots are still in development, this 

initial list of relevant sensors is subject to change. 

4.3.1   Flood Pilot 

The most relevant sensors for the flood pilot are the water-level sensors in the different 

rivers in the pilot area, and the weather stations recording precipitation, since they reflect 

the current situation. These are in-situ, on-line sensors that generate machine-interpretable 

time-series data and they are always available, not just in an emergency situation. 

The FMI makes forecasts of the weather, and AWAA makes forecasts of the water-levels in 

the different rivers in the pilot area. The models used to create these forecasts can be seen 

as virtual sensors that generate machine-interpretable data. The water-level forecasts are 

time-series, while the weather forecasts are coverages that can be converted to time-series 

if needed. These models run automatically and are also available when there is no 

emergency situation. 

First responders and the general public can send messages, with images and video, to the 

beAWARE system. When these data arrive in the system, the system cannot directly use this 

data. These raw data is therefore classified as off-line, remote, non-machine-interpretable, 

while the analysed results are on-line, virtual, machine-interpretable. On one side, this data 

is analysed first by the image/video/text analysis components to extract the important 

information and to make it available for the next analysis steps. This generated result can be 

classified as machine-interpretable data. On the other side, the raw data can be directly 

displayed to a user, to allow next to the automated evaluation a manually triggered action. 
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4.3.2   Fire Pilot 

An important indicator for fire-risk is the current and predicted weather. Important sensor 

data for this pilot are therefore data from weather stations (on-line, in-situ, machine-

interpretable, time-series) and the weather forecast (on-line, virtual, coverages/time-series, 

machine-interpretable). A high temperature, combined with a low humidity and little 

precipitation increases the risk of fire. 

Next to the risk of a fire, the fast detection of existing fires is very important to allow a quick 

containment. A possible way to detect these is by using static cameras that constantly 

record the area of interest (on-line, remote, non-machine-interpretable) and analyse the 

data from those cameras using video analysis software (on-line, virtual, machine-

interpretable). 

Messages sent by citizens or first responders are also important, since the static cameras 

don’t cover the overall area. This non-machine-interpretable data is handled the same way 

as in the Flood pilot. 

4.3.3   Heatwave Pilot 

Also for the Heatwave pilot the weather situation and the weather forecast are important 

sensor inputs, the same as for the other two pilots. Where for the Fire pilot a low humidity 

increases the risk of fire, for the heatwave pilot a high humidity increases the severity of a 

heatwave. The messages, images and videos sent by first responders and the general public 

are also handled the same way as in the Flood and Fire pilot. 

Another relevant type of information is how crowded different public buildings that have air-

conditioning are. This allows a systematic guidance of people to those places. Until now, it’s 

unclear if pertinent data can be gathered using online sensors. However, it is possible to 

collect such data by using messages/images sent by first responders and citizens using the 

mobile app; like in all cases this offline, non-machine-interpretable data first needs to be 

analysed to extract machine-interpretable data. 

4.4  OGC SensorThings API Data Model 

The model used to describe the sensors and their metadata in the beAWARE ontology is 

based on the data model described in the SensorThings API standard. The OGC SensorThings 

API standard (Liang, 2016; OGC, 2016) defines both a data model and a REST-API to access 

the data. It can be described as Sensor Web Enablement for the Internet of Things. It is a 

modern, light-weight REST API designed for storing and requesting sensor data, with 

advanced filtering options. The data model of this standard is based on OGC/ISO 
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Observations and Measurements model (OGC, 2011), which is a standardised model to 

describe a sensor. 

The data model of the OGC SensorThings API consists of 8 entities, with their properties and 

relations (see Figure 11). The entities are: 

 Thing: A virtual or physical object. Depending on the use case this can be the object 

being observed, such as a river or river section, or the sensor platform, such as a 

satellite or weather station. 

 Location: The locations of Things. These can be geographic locations, encoded as 

points or areas, or symbolic locations, like “Crossing of road X and street Y” 

 HistoricalLocation: the link between a Thing and a Location, with the time indicating 

when the Thing was in a certain Location. 

 Sensor: The meta-data of a sensor that generates data. This could be a real sensor, or 

mathematical model generating a prediction. 

 ObservedProperty: A property of the feature of interest that is being observed by a 

sensor. For instance, the water level or the air temperature. 

 Datastream: a collection of Observations of one ObservedProperty, made by one 

Sensor, and linked to one Thing. 

 Observation: a measurement made by a Sensor. 

 FeatureOfInterest: The geographic area or location for which an Observation was 

made. This can be the same as the Location of the Thing, which is often the case for 

in-situ sensing. In the case of remote sensing, the feature of interest can be different 

from the location of the Thing, depending on what is chosen as the Thing. The 

feature is a geographical point or a polygon encompassing an area or volume, usually 

encoded in GeoJSON. 
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The relations between these entities are also defined by the data model. Most relations are 

one-to-many: An Observation must have one FeatureOfInterest and one Datastream, while a 

Datastream and FeatureOfInterest can have zero or more Observations. A Datastream must 

have one ObservedProperty, one Sensor and one Thing, while a Thing, ObservedProperty 

and Sensor can have zero or more Datastreams. A HistoricalLocation must have one Thing, 

while a Thing can have zero or more HistoricalLocations. 

The relations of Location are a bit more involved: a Thing can have zero or more Locations, 

but these Locations must all be different representations of the same physical location (e.g. 

a geospatial location, represented by GPS coordinates, and a symbolic location). A Location 

can have zero or more Things. 

Each time a Thing is linked to a new Location (or set of Locations) a new HistoricalLocation is 

generated that tracks the time when the Thing was at this Location. A HistoricalLocation also 

has the restriction that if it has more than one Location, these Locations have to be different 

representations of the same real-world location. 

When applied to beAWARE, for example to a water-level gauge in a river section, the Thing 

could be the river section of which the sensor is measuring the water level. The Thing would 

have a location, with a polygon describing the layout of the river section. Since river sections 

usually do not move much, there would be only one HistoricalLocation. The Sensor entity 

would describe the exact properties of the water-level gauge, like brand, type and accuracy. 

The ObservedProperty would be named “water level” and contain an exact reference to the 

water level entry in the knowledge base. For this set of Thing, Sensor and ObservedProperty 

there would be a Datastream, grouping the water-level observations for this sensor in this 

river section. Each value measured by the sensor would be stored as an Observation. Since 

 

Figure 11: the OGC SensorThings API data model 
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the sensor is static, each Observation is linked to the same FeatureOfInterest, which has the 

exact coordinates of the Sensor.  

An important feature of the OGC SensorThings API is that it is possible to request data from 

related entities in a single query. For example, in a single request, one can fetch a set of 

Things, including the Datastreams belonging to those Things, and for those Datastreams the 

ObservedProperty, and the last Observation. This makes it very easy to write data 

visualisation tools, since it is possible to fetch all relevant data in one request, instead of 

having to make many separate, asynchronous requests. 

For a temperature sensor located at the same spot as the water-level gauge, the same Thing, 

Location and FeatureOfInterest entities would be used. Only new Sensor, ObservedProperty 

and Datasteam entities would need to be added. 

4.5  Mapping the sensors onto the Ontology 

In order to make the beAWARE platform able to offer a coherent view of all data available 

for a given vulnerable object (like living being, infrastructure or possessings), the platform 

needs to know which data is available and how it is relevant for the vulnerable object. To 

achieve this, all information about vulnerable objects and their exposed risks have to be 

described in the beAWARE ontology, as will be described in detail in D4.2 - Semantic 

representation and reasoning. In order to enable the capability of the platform to combine 

information about the vulnerable objects with sensor data, the information related to a 

sensor has to be mapped to the same ontology. At this point, we would like to mention that 

only the sensor metadata is mapped to the ontology. This allows referencing from the 

ontology to the SensorThingsAPI server. The measurements themselves are stored inside the 

SensorThingsAPI server and are accessible through this relation. 

The representation of sensor data and metadata in the ontology requires that the entities of 

the SensorThingsAPI are mapped to concepts in the ontology and are linked to the other 

relevant concepts. The result of this mapping is that most of the entity types in the data 

model of the SensorThingsAPI are represented by a concept in the beAWARE ontology. Since 

the ontology is still being developed, the exact mapping might still change. 

The concept “Thing” in ontologies is reserved, meaning that it is impossible to name a 

concept “Thing”. Therefore, the entity “Thing” in the SensorThings API is mapped to the 

concept “Asset Representation” in the ontology. An Asset like a river is monitored by a 

SensorThing. The location of a “Thing” in the SensorThingsAPI is represented by the concept 

with the same name in the ontology. Historical locations won’t be used in our case. The 

entities “ObservedProperty” and “Datastream” are represented by the “Parameter” and 
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“DataSet” concepts respectively. Since the ontology will not store any observation itself, 

those measurements are reference by the “Service Endpoint” concept, which provides an 

URL to the datastream in the SensorThingsAPI server. Those references allow an easy 

navigation between the ontology and the data in the SensorThingsAPI server. 

4.5.1   Time series 

This type of data and its metadata can be directly modelled according to the SensorThings 

API data model. For this type of data, only the metadata (such as Sensor type, observed 

properties, etc.) is stored in the ontology. The observations themselves are not stored in the 

ontology, but in a separate server that implements the SensorThings API. Since this server 

will also have to store metadata as specified by the SensorThings API, there will be some 

duplication of metadata between the ontology and the SensorThings API server. An example 

of time series data is the water level at some point in the river. It contains measurements of 

the past, the current value as well as the predicted value in the future. 

4.5.2   Geospatial Coverages 

For this type of data, only the metadata will be stored in the ontology, the data itself is 

usually made available through a Geoserver instance, using WMS or WCS. To link the 

metadata in the ontology to the data, the Observation instance in the ontology could 

contain a URL, which points to the data stored in the Geoserver instance. For example, the 

weather forecast matches this category. 

4.5.3   Images and Video 

These sensor data will be stored as files in the platform. Since these data come from mobile 

devices of the public and of first responders, and are not inherently geo-referenced, it is 

important to define a clear way to organise these data and add relevant metadata like 

location, who sent the file, and which tasks they are relevant for. Such files are represented 

by the media item concept in the ontology, which has a reference to the stored file in the 

platform. By analysing those media files with analytical components, machine-readable 

information is generated. This contains for example the detection of vulnerable objects 

inside the media files which is represented by the concept with the same name. 
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5 CONCLUSIONS  

In this report, we have presented the first version of the social media monitoring tool, as 

well as the sensor data wrappers of the beAWARE platform. Regarding the social media 

information, we are connected to Twitter’s Streaming API that allows real-time feeds and is 

preferable to continual requests from Twitter's REST API. Moreover, keyword-based filtering 

of tweets is the most fitting option to the framework's goal at this stage. The list of search 

keywords and accounts had to be reconsidered because some keywords had been delivering 

only unrelated content. At the storage of data, we indexed tweets using the JSON format 

provided by Twitter Streaming API, as it is found to be optimal for storing tweets in a Mongo 

database and allows interoperable solutions. However, we had to enrich it with additional 

fields to improve efficiency in the overall flow of data in the further stages of data analysis. 

Experiments on two collections of data, involving textual and visual information has shown 

that the best performing method in the case of text classification is the use of the TFIDF 

method for text representation and Random Forests as classifier. The other methods that 

were tested were the TF method together with Random Forests, the word2vec with SVM 

and the Jaccard Similarity Coefficient. The Jaccard Similarity Coefficient performed rather 

well but was not selected eventually for the text classification module since it is rather slow 

compared to the others. Moreover, as far as visual classification is concerned, the DCNN-

based features together with an SVM classifier were selected as the best performing method 

among other simple color-based or edge-based features. 

Regarding the management of sensor data in the beAWARE platform, we described the 

different types of sensor data relevant to the beAWARE use cases, and the different 

approaches taken for storing these different types of sensor data. The initial plans for linking 

the sensor data to the ontology have also been laid out, but these need to mature more, and 

will be described in detail in future deliverables. 

Future work includes expanding the import mechanisms for the different sources of sensor 

data used in the beAWARE pilots, adding mechanisms for threshold detection and automatic 

data processing to the sensor data platform. Future work in social media monitoring involves 

the addition of a multimodal clustering module to support the visualisation of incoming 

tweets in the PSAP, further exploration on the on the data fusion of visual and textual 

information and optimal text representation and feature extraction method. The plan is also 

to examine the enhancement of the crawling process with location-based search and burst 

detection for the identification of specific events. 
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