
This project has received funding from the European Unionôs Horizon 2020 research and innovation program under grant
agreement No 700475

beAWARE
Enhancing decision support and management services in extreme weather

climate events

700475

D7.3

Integrated operational beAWARE
platform

Dissemination level: Public

Contractual date of delivery: Month 12, 30 December 2017

Actual date of delivery: Month 12, 22 December 2017

Workpackage: WP7: System development, integration and evaluation

Task: T7.2 - beAWARE platform tools integration

Type: Report

Approval Status: Final Draft

Version: 0.5

Number of pages: 37

Filename: D7.3_beAWARE_Integrated operational beAWARE
platform_2017-12-22_v0.5

Abstract

The main goal of this document is to describe the implementation of each component of the
beAWARE platform and the integration stage of the operational platform as a whole.
Additionally, a first simple operational scenario that has been implemented is also being
described, in order to demonstrate the interoperability of the platform.

¢ƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ƛƴ ǘƘƛǎ ŘƻŎǳƳŜƴǘ ǊŜŦƭŜŎǘǎ ƻƴƭȅ ǘƘŜ ŀǳǘƘƻǊΩǎ ǾƛŜǿǎ ŀƴŘ ǘƘŜ 9ǳǊƻǇŜŀƴ /ƻƳƳǳƴƛǘȅ ƛǎ ƴƻǘ ƭƛŀōƭŜ ŦƻǊ ŀƴȅ ǳǎŜ
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information

This project has received funding from the European Unionôs Horizon 2020 research and innovation program under grant
agreement No 700475

at its sole risk and liability.

Co-funded by the European Union

 D7.3 ς V1.0 D8.1 ς V1.0

Page 3

History

Version Date Reason Revised by

V0.1 01.12.2017 Initial version and assignments
distribution

CERTH

V0.2 04.12. 2017 Incorporate information from all
partners

All partners

V0.3 ς 0.4 06.12.2017 Internal review CERTH

V0.5 22.12.2017 Final Version CERTH

Author list

Organisation Name Contact Information

IBM Benny Mandler MANDLER@il.ibm.com

CERTH Anastasios Karakostas akarakos@iti.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

CERTH Emmanouil Michail michem@iti.gr

CERTH Kostas Avgerinakis koafgeri@iti.gr

UPF Stamatia Dasiopoulou stamatia.dasiopoulou@upf.edu

MSIL Yaniv Mordechai yaniv.mordecai@motorolasolutions.com

IOSB aƻǖƎǊŀōŜǊ WǸǊƎŜƴ juergen.mossgraber@iosb.fraunhofer.de

IOSB Hylke van der Schaaf hylke.vanderschaaf@iosb.fraunhofer.de

IOSB Philipp Hertweck philipp.hertweck@iosb.fraunhofer.de

mailto:stefanos@iti.gr
mailto:michem@iti.gr
mailto:koafgeri@iti.gr

 D7.3 ς V1.0 D8.1 ς V1.0

Page 4

Executive Summary

This deliverable presents the implementation of the operational prototype of the integrated
beAWARE platform. The development status of each component is being presented here
along with the integration approach and infrastructure that was used towards the
implementation of the platform. The deliverable also presents the first simple operational
use case scenario that has successfully been implemented in order to test the
interoperability of the different integrated modules so far. Additionally, a logger
demonstrator interface has been developed in order to monitor and demonstrate the
interoperability of the platform and the messages that are being exchanged between
components, according to this use case. Functional results and screenshots are presented in
this deliverable.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 5

Abbreviations and Acronyms

API Application Programming Interface

ASR Automatic Speech Recognition

CI Continuous Integration

DTr dynamic texture recognition

DTstL Dynamic Texture spatio-temporal localization

GUI Graphical User Interface

IoT Internet of Things

ISO International Organization for Standardization

JSON JavaScript Object Notation

K8s Kubernetes

KB Knowledge Base beAWARE component

M2M Machine-to-machine

ObjD object detection

OGC The Open Geospatial Consortium

PaaS Platform as a Service

PSAP Public-safety answering point

SOA Service-oriented architecture

STL Spatio-Temporal localization

TLc Traffic Level classification

UC Use Case

WP Work Package

MS Milestone

 D7.3 ς V1.0 D8.1 ς V1.0

Page 6

Glossary

BlueMix ς a public cloud hosting platform provided by IBM

Cloud Foundry ς an open and extensible Platform as a Service offering

Consumable - Designing an easy to use product

Mongo DB ς Scalable document oriented NoSQL data store

ElasticSearch - high-performance indexing and search system that can be integrated with the
CouchBase scalable data back-end.

External applications ς Independent applications that are developed and hosted outside the
platform but internally make use of beAWARE components.

JSON - (JavaScript Object Notation) is a lightweight data-interchange format often used in
web applications

Kafka ς A messaging middleware mostly used to connect between different components

Kubernetes ς Containers orchestration service: an open-source system for automating
deployment, scaling, and managing containerized applications.

OASIS ς standardization body: advancing open standards for the information society

OWL - The Web Ontology Language is a family of knowledge representation languages for
authoring ontologies

Platform-as-a-Service - a cloud computing concept which offers the developer and deployer
of cloud based applications the infrastructure, both HW and middleware, needed for
creating and deploying successfully such applications on a cloud environment.

PSAP ς Command and control centre to serve authorities, first responders, and citizens,
mainly during crisis situations

RDF - A standard model for data interchange on the Web. Used in beAWARE for storing
entities description in a searchable manner.

RESTful service ς A web service adhering to the REST protocol for information exchange
among services, specifying the operations and associated data payload.

SPARQL ς an RDF query language.

WebSockets ς Communication protocol providing full-duplex communications channels over
a single TCP connection; used for bi-directional communication between the beAWARE
platform and applications.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 7

Table of Contents

1 INTRODUCTION ... 10

2 PROTOTYPE ARCHITECTURE .. 11
2.1 Global View.. 11

2.1.1 Architecture Layers .. 12
2.2 Components... 14

2.2.1 Ingestion Layer .. 14
2.2.2 Business Layer ... 14

2.3 Internal Services ... 15
2.3.1 Communication Bus ... 15
2.3.2 Data management ... 15

2.4 External layer ... 15
2.4.1 End-users applications ... 15

3 INTEGRATION APPROACH ... 16

4 COMPONENTS AND INTEGRATION STATUS .. 17

5 INFRASTRUCTURE AND CODE ORGANIZATION ... 22

6 DEMONSTRATOR URLS AND INFORMATION .. 27

7 SUMMARY AND CONCLUSIONS ... 37

List of Figures
Figure 1: Architectural high-level view .. 12

Figure 2: beAWARE Kubernetes cluster ... 22

Figure 3: beAWARE cluster overview ... 22

Figure 4: Kubernetes cluster worker nodes ... 22

Figure 5: MessageHub cloud service .. 23

Figure 6: CI workflow.. 24

Figure 7: CI detailed description .. 24

Figure 8: beAWARE Kubernetes cluster ... 25

Figure 9: Cluster deployments ... 26

Figure 10: The beAWARE Logger Environment .. 27

Figure 11: Operational Prototype Demonstration: ¢ƘŜ ǘǊƛƎƎŜǊǎ ǎƛƳǳƭŀǘƻǊΩǎ ŘǊƻǇ-down menu
that creates the incident messages. .. 28

Figure 12: Operational Prototype Demonstration: The structure of the new incident message
(right screen) during the first phase (initial incident report). .. 29

 D7.3 ς V1.0 D8.1 ς V1.0

Page 8

Figure 13: Operational Prototype Demonstration: The messages that are sent to KB and
consequently to PSAP (central screen) during the first phase (initial incident report). 29

Figure 14: Operational Prototype Demonstration: The updated incident report containing an
image as an attachment, as can be seen on the right screen, during the second phase (image
upload). .. 30

Figure 15: The messages (central screen) that are sent to KB, PSAP and Image Analysis
module after the upload of an image, along with the corresponding information flow (left
screen). ... 30

Figure 16: Operational Prototype Demonstration: The messages (central screen) that are
exchanged after the image analysis, along with the corresponding information flow (left
screen). ... 31

Figure 17: Operational Prototype Demonstration: The updated incident report containing a
video as an attachment, as can be seen on the right screen, during the third phase (video
upload). .. 31

Figure 18 Operational Prototype Demonstration: The messages (central screen) that are sent
to KB, PSAP and Video Analysis module after the upload of the video with the corresponding
information flow (left screen). ... 32

Figure 19: Operational Prototype Demonstration: The messages (central screen) that are
exchanged after the video analysis, along with the corresponding information flow (left
screen). ... 32

Figure 20: Operational Prototype Demonstration: The updated incident report containing an
audio recording as an attachment, as can be seen on the right screen, during the fourth
phase (audio upload). ... 33

Figure 21: Operational Prototype Demonstration: The messages (central screen) that are
sent to KB, PSAP and Audio Analysis module after the upload of the audio recording with the
corresponding information flow (left screen). ... 33

Figure 22: Operational Prototype Demonstration: The messages (central screen) that are
exchanged after the audio transcription and the text analysis of the transcription, along with
the corresponding information flow (left screen). .. 34

Figure 23: Operational Prototype Demonstration: The metric report (right screen) that is
created by the Crisis Classification component. .. 34

Figure 24: Operational Prototype Demonstration: The messages (central screen) sent from
the Crisis Classification component to KB ans subsequently to PSAP, along with the
corresponding information flow (left screen). ... 35

Figure 25: Operational Prototype Demonstration: The Twitter simulation tool (right screen)
which simulates the Social Media Analysis Tool. ... 36

Figure 26: Operational Prototype Demonstration: The messages (central screen) sent after
the identification and insertion of the most relevant tweets from the Social Media Analysis
Tool, along with the corresponding information flow (left screen). 36

 D7.3 ς V1.0 D8.1 ς V1.0

Page 9

List of Tables
Table 1: Social Media Monitoring Tool status .. 17

Table 2: Media Hub Tool status ... 17

Table 3: Image Analysis Tool status ... 18

Table 4: Video Analysis Tool status .. 18

Table 5: Automatic Speech Recognition Tool status .. 19

Table 6: SCAPP/FRAPP status ... 19

Table 7: Knowledge Base status ... 20

Table 8: Sensor Analytics Tool status ... 20

 D7.3 ς V1.0 D8.1 ς V1.0

Page 10

1 LƴǘǊƻŘǳŎǘƛƻƴ

The beAWARE project aims to perform research leading to the development of a system that
supports handling of weather related crisis events. The envisioned system covers areas of a
crisis lifecycle taking place in the past, present, and future. Namely, there are provisions and
components that help with the forecast of future events, there are components that help to
provide a current accurate understanding of the crisis event at hand and help handling the
event. Finally, there are components that accumulate knowledge of past events to help
handling future events, as such beAWARE can be viewed as a learning platform which makes
use of knowledge from previous incidents to help respond better to a current incident.

The technological roadmap deliverable (D7.1 ς beaware technological roadmap) determined
the main attributes and timelines for the development of the different components of the
BeAWARE platform, as well as the integration steps of all the separate components into an
operational platform. The system requirements deliverable (D7.2 ς System Requirements
and Architecture) further described the architecture of the proposed platform including
main system requirements driving it and the way the proposed design will enable achieving
the ambitious goals set out at the proposal, via the use cases.

The main goal of the current deliverable is to describe the progress that has been made
towards the implementation of the operational BeAWARE platform and map it to the
proposed timeline that has been determined in the technological roadmap. This document
presents the implementation stage of each separate component and the operational
platform as a whole, along with the infrastructure that is used, the code organization and
the architecture that has been implemented. The deliverable also presents the first simple
operational Use Case scenario that has successfully been implemented in order to test the
interoperability of the different integrated modules so far.

!ŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ǇǊƻƧŜŎǘΩǎ 5ŜǎŎǊƛption of Action and the technical roadmap in Del7.1, the
second milestone (MS2), which has due date month 12 (December 2018), marks the
completion of the setup of the operational infrastructure of the beAWARE system (with
dummy services). Specifically, a dummy end-to-end architecture is expected, with all service
dummies in place, operating on test/mock data. MS2 also includes: setup of the basic text
analysis infrastructure; the initial social media monitoring module; web real time
communication; (vi) network infrastructure.

As will be described in detail in the following sections, an operational Prototype of the
beAWARE platform has been developed, according to the technical roadmap. Moreover,
services for multimedia analysis, tweeter monitoring and text analysis have been developed
along with semantic representation and reasoning modules, in accordance to the expected
timeplan.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 11

2 tǊƻǘƻǘȅǇŜ ŀǊŎƘƛǘŜŎǘǳǊŜ

The forming architecture of the operational platform was determined with the ultimate goal
of providing accuracy and functionality for decision support systems to be able to respond
well to weather related disaster scenarios. This architecture has been described in detail in
D7.2, thus only a short description of the main architectural parts of the Integration
Prototype will follow in this chapter.

2.1 Global View

The architecture is roughly made up of the following layers:

1 Ingestion layer, containing mechanisms and channels through which data is brought
into the platform;

2 Internal services layer, is comprised of a set of technical capabilities which are
consumed by different system components. This layer includes services such as
generic data repositories and communication services being used by the different
components;

3 Business layer, containing the components that perform the actual platform-specific
capabilities;

4 External facing layer, including the end-ǳǎŜǊǎΩ ŀǇǇƭƛŎŀǘƛƻƴǎ ŀƴŘ t{!t όtǳōƭƛŎ-safety
answering point) modules, interacting with people and entities outside the platform
(end-users of the platform).

As can be derived from Figure 1, the first step in a generic flow of the platform consists of
new data being pushed into the platform. That step acts as a trigger to potentially many
internal components which are interested in the newly acquired data, or further processing
thereof. The new data can originate from specific beAWARE applications used by civilians
(end-users) or by first responders. Moreover, incoming data to the platform can originate
from other sources as well, such as IoT devices and social media pots grabbed by crawlers.

Once a new piece of data is successfully ingested into the system, the data is stored in a
temporary raw data store and the availability of the new piece of data is broadcasted to all
interested components using a specific topic of the messaging bus service. There is a
separate topic for each kind of information flowing into the system, such that only
components which are interested in that specific kind of data will be made aware of the
arrival of a new relevant piece of data. All interested parties will receive the information,
which includes a pointer enabling to access the data, and shall perform their specific analysis
on the new data. Note, that the result of such an analysis may in turn create a new piece of
data which is of interest to other components. The end results of the analysis can be added
to the knowledge base, and if required will notify PSAP related components of the
identification of a new state.

The PSAP in turn may use beAWARE components, including apps to manage and alert the
different stakeholders (citizens, first responders, and authorities).

 D7.3 ς V1.0 D8.1 ς V1.0

Page 12

Figure 1: Architectural high-level view

2.1.1 Architecture Layers

As described above BeAware architecture consists of four main layers:

Ingestion layer ς Serves as the input mechanism into the platform. Different kinds of
information can serve as input to the system. For example, IoT devices and additional input
mechanisms, such as dedicated applications, can produce different kinds of data such as
measurements (time series), pictures, videos, audio, and more. An additional source of
incoming information is weather related data. Typically, once a new piece of data has been
ingested into the platform, it is stored temporarily in a raw storage system, and a proper
notification is sent via the service bus to the interested parties.

Internal services ς These services are used internally for the proper functioning of the
capabilities provided by the various components. These are typical middleware services
which are tailored for the specific use of the beAWARE system. These services are used
mostly for data storage and communication. Some generic data analytics and processing
services may be used as well. Examples of this layer include a central (raw) data repository, a
central message bus, and a generic knowledge base. These services will be accessible to all
platform components.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 13

A particular kind of an internal service used throughout the system relates to handling
semantic information. This includes extracting semantic information, storing it, and inferring
new information based on accumulated data. This group of services includes:

¶ Knowledge base ς component and service

¶ Semantic reasoners ς component and service

Business layer ς This layer encompasses the components that provide the actual platform
specific capabilities. The bulk of the platform is concentrated at this layer, which interacts in
turn with all additional layers.

A particular group of components in this layer tackles the analysis of different kinds of data
flowing into the platform. A main aspect of the components in this category is the extraction
of semantic information from various kinds of input data flowing into the platform from
various different sources. Among this group we can find the following components:

¶ Social Media Analysis Services

¶ Image analysis

¶ Video analysis

¶ Automatic speech recognition - Audio analysis

¶ Sensor analysis

These components help to determine the current crisis classification and drive the detection
of events which leads in turn to meaningful decision support.

A third group of related components deal mostly with text, both at the input and output
aspects. Namely, incoming text messages, from social media, mobile applications and
transcribed voice recordings, possibly in a variety of languages, are processed and analyzed,
and outgoing text messages that need to be delivered by the platform are prepared:

¶ Multilingual Report Generator

¶ Multilingual Text Analyzer

External layer ς This layer handles the interaction of the platform with external entities,
both as input providers and output recipients. There are two main groups of components
making up this layer, namely:

¶ Mobile applications

o Civilians Mobile Application

o First Responder Mobile Application

¶ Control centers

o Public Safety Answering Point (PSAP)

o Local Control Centers at the deployment sites

 D7.3 ς V1.0 D8.1 ς V1.0

Page 14

2.2 Components

The individual components of beAWARE have been described in detail in D7.2, thus a rough
description follows here. As already mentioned, BeAware components can be categorized in
the following layers.

2.2.1 Ingestion Layer

Social Media Monitoring module

The aim of the social media monitoring module is to collect posts from Twitter that appear
to be relevant to the three main pilots, i.e. floods, fire, and heatwave, in their respective
geographical locations. The crawling process needs to be real-time and effective, able to
ƘŀƴŘƭŜ ƭŀǊƎŜ ǎǘǊŜŀƳǎ ƻŦ ŘŀǘŀΣ ŜǎǇŜŎƛŀƭƭȅ ǿƘŜƴ ƪŜȅǿƻǊŘǎ ǎǳŎƘ ŀǎ άŦƛǊŜέ ƘŀǾŜ ƳǳƭǘƛǇƭŜ
meanings and needs disambiguation. The module collects tweets in English, Greek, Italian
and Spanish, that are published by any citizen, civil protection organization or online news
website, aiming to provide relevant information about crisis events, clustered by location
and delivered through a periodic Twitter report.

Monitoring machine sourcing information from IoT and M2M platforms module

Sensor data is crucial for tracking the onset and progress of a crisis. There is a large variation
in sensors and an almost equally large variation in interfaces to access the data from those
sensors. The aim of this module is to collect time-series sensor data from various on-line
sensors and make this sensor data, and the sensor metadata, available through a
standardised interface.

2.2.2 Business Layer

Semantic modelling, integration and aggregation

This component addresses the collection, aggregation and semantic integration of content
relevant to emergency information in order to facilitate decision support and early warnings
generation. This is accomplished through: (i) the social media monitoring module, (ii) the
module responsible for monitoring machine sourcing information from IoT and M2M
platforms, (iii) weather and hydrological forecasts, and (iv) the semantic representation and
reasoning module.

The Semantic representation and reasoning module has overall responsibility for semantic
extraction and storage capabilities in the system and consists of the following components:
όŀύ ǘƘŜ ōŜ!²!w9 YƴƻǿƭŜŘƎŜ .ŀǎŜ όY.ύΣ ŀƭǎƻ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άƻƴǘƻƭƻƎȅέΣ όōύ ǘƘŜ Y. {ŜǊǾƛŎŜΣ όŎύ
the semantic enrichment and reasoning framework.

Early Warning

This component addresses the provisioning of the necessary technological solutions to
enable the beAWARE framework to provide early warning and decision support to the PSAP.
This is accomplished through: (i) the crisis classification module, (ii) the multilingual text
analysis module, and (iii) the concept/event detection from multimedia and (iv) automatic
speech recognition modules.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 15

Multilingual report generation

This component addresses the generation of emergency reports and messages that should
be communicated to the different types of stakeholders that beAWARE considers
(authorities, first responders, citizens, etc.) during an emergency in order to provide them
with tailored support. It accomplishes this through the following two modules.

PSAP

The objective of this component is to serve as a means for public safety answering points
(PSAP) to obtain situational awareness and a common operational picture before and during
an emergency, and to enable efficient emergency management based on a unified
mechanism to receive and visualize field team positions, incident reports, media
attachments, and status updates from multiple platforms and applications.

2.3 Internal Services

2.3.1 Communication Bus

The main purpose of this component is to provide generic communication capabilities
among different beAWARE components and participants. It can be used to send messages
and notification among components or to share information among various entities. The
dominant paradigm shall be the publish/ subscribe pattern leading to event-based
communication among collaborating partners by registering interest in particular events.
Using this paradigm producers and consumers do not have to be aware of each other and
need only to agree on the topic via which they are going to communicate, and the message
format of the agreed upon topic.

2.3.2 Data management

The data management component deals with data ingestion, storage, and potentially some
level of processing for shallow analysis. Moreover, data based notifications can be supported
by connecting the data pipe to the cloud communication bus which serves as the messaging
pipe.

2.4 External layer

2.4.1 End-users applications

There are two kinds of end-user applications envisioned for mobile devices (smartphones or
tablets): one used by the first responders and another used by the general public. These
mobile applications will communicate with a backend that will in turn connect to the rest of
the beAWARE system.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 16

3 LƴǘŜƎǊŀǘƛƻƴ !ǇǇǊƻŀŎƘ

Due to the distributed approach of the design and implementation of the beAWARE
platform, according to which different partners develop independently and maintain
ownership over different components of the system, combined with the complexity of the
platform, which is comprised of many different components, we opted to follow a micro-
services approach to make the entire process of design, implementation, and integration
more manageable, in a distributed manner.

Using this approach, we maintain the independence of the different components, and the
integration focus is on the exposed capabilities of each component. The integration between
components is being realized via two main mechanisms, first, inter-communication via the
platform communication service bus, and second through exposed Representational state
transfer (REST) interfaces of various components, potentially aided by a discovery service. In
addition, date is being exchanged between components by using shared data stores, and
having links to data items incorporated into messages exchanged between components.

For communicating through the communication bus, the components need only to agree on
the topic via which they will be interacting, and the format of the messages published on
that topic. For communicating via a REST interface, there needs to be a way for one micro-
service to find another micro-service it wishes to invoke. For that purpose, a service
discovery component may be deployed. Such a component serves as a central registry of
available micro-services, responding to queries about the location of a certain micro-
sIervice.

The system development, as already described in Deliverable 7.2, follows an iterative
approach, from an initial dummy prototype to the final version, and follows the above cycle:

1. Integration Prototype: Dummy end-to-end architecture; most service dummies in
place, operating on test/mock data. This is expected by the end of the first year of
the project as a part of MS2

2. First Prototype: Using real services from WP3-WP6; First Prototype milestone (MS3),
expected at M18.

3. Second Prototype: Using real services from WP3-WP6; Second Prototype milestone
(MS4), expected at M24.

4. Final System: Complete beAWARE platform; Final System milestone (MS5), expected
by the end of the project (M36).

According to the expected timeline for MS2, an initial Integration Prototype has been
implemented and communication between different components has been achieved, by
implementing a simple use case, as will be described in the following sections. Moreover,
apart from dummy services, some services already have some integrated functionality on
them. The implemented services are described in detail in the next chapter.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 17

4 /ƻƳǇƻƴŜƴǘǎ ŀƴŘ LƴǘŜƎǊŀǘƛƻƴ ǎǘŀǘǳǎ

Table 1: Social Media Monitoring Tool status

Service name Social Media Monitoring Tool

CI cluster social-media-analysis

Functional
Description

Version 0.5, baseline version

Deployment
status

Deployed

Integration
status

Integrated

Integration
issues
/ dependencies

All dependencies are included in pom.xml.

Environment variables: SECRET_MH_API_KEY,

SECRET_MH_BROKERS, SECRET_MONGO_URI

Next steps - Send simulated tweets separated.

- Replace dummy Twitter report.

Table 2: Media Hub Tool status

Service name Central Hub to Assign Media Analysis

CI cluster media-hub

Functional
Description

Version 1.0, working version

Deployment
status

Deployed

Integration
status

Integrated

Integration
issues
/ dependencies

All dependencies are included in pom.xml.

Environment variables: SECRET_MH_API_KEY, SECRET_MH_BROKERS

For a complete workflow, it requires CI clusters ASR, image-analysis,
and video-analysis.

Next steps

 D7.3 ς V1.0 D8.1 ς V1.0

Page 18

Table 3: Image Analysis Tool status

Service name Image Analysis

CI cluster beaware-project/image-analysis

Functional
Description

Version 0.2, baseline version

Deployment
status

Deployed

Integration
status

Integrated

Integration
issues
/ dependencies

Communicates with media-hub service

Uses port 7788

Dependencies show up in the Dockerfile

Next steps ¶ Integrate a working version of the flood-fire detection module

¶ Optimize request handling

¶ Optimize analysis algorithms

Table 4: Video Analysis Tool status

Service name Video Analysis

CI cluster beaware-project/video-analysis

Functional
Description

Version 0.2, baseline version

Deployment
status

Deployed

Integration
status

Integrated

Integration
issues
/ dependencies

Communicates with media-hub service

Uses port 7777

Dependencies show up in the Dockerfile

Next steps ¶ Integrate a working version of the object-detection and tracking
module

¶ Integrate a working version of the traffic management module

¶ Integrate a working version of the dynamic texture detection
module

¶ Optimize request handling

¶ Optimize analysis algorithms

 D7.3 ς V1.0 D8.1 ς V1.0

Page 19

Table 5: Automatic Speech Recognition Tool status

Service name Automatic Speech Recognition

CI cluster beaware-project/ASR

Functional
Description

Version 1.0, working version

Development
status

Implementation of first prototype. It includes language models for (Greek,
Spanish, Italian and English). ASR module can handle several .wav formats

Deployment
status

Deployed

Integration
status

Integrated

Integration
issues
/ dependencies

All dependencies are included in pom.xml.

Environment variables: SECRET_MONGO_URI

It communicates with Media hub:

- Data in: audio file URL, recording timestamp, language

- Data out: Mongo reference ID pointing to the transcription result

Next steps - Increase recognition accuracy of all language models by further adapting
the models as new data become available.

- Expand compatibility with more audio formats

- Include an automatic language identification module in order to
automatically recognize the language of the speaker

Table 6: SCAPP/FRAPP status

Service name SCAPP/FRAPP (Mobile Application)

CI cluster Not on cluster, yet

Functional
Description

End user application for mobile devices.

Development
status

Implementation of first prototype. This includes a first version of the UI as
well as basic communication functions.

Deployment
status

Not deployed to cluster, yet.

Integration
status

Communication interface nearly clarified with other partners. Basic
communication function tested in coordination with other components.

Integration No issues regarding the integration with other components.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 20

issues /
dependencies

Source code should not be available to public. Therefore not possible to
participate in continuous integration process.

Next steps Integrate deployment to K8 cluster. Finalize implementation of function to
send incident report.

Table 7: Knowledge Base status

Service name KB

CI cluster Not on cluster, yet

Functional
Description

Server and management APIs for semantic data.

Development
status

Knowledge Base fully developed. First version of ontology deployed to
Knowledge Base.

Deployment
status

Not deployed to cluster, yet.

Integration
status

Provided interfaces for other components to access/modify semantic data.

Integration
issues /
dependencies

No issues regarding the integration with other components.

Source code should not be available to public. Therefore not possible to
participate in continuous integration process.

Next steps Integrate deployment to K8 cluster.

Clarifying further requirements and changes to the ontology during
development of other components.

Table 8: Sensor Analytics Tool status

Service name SENSAN

CI cluster Deployed to cluster.

Functional
Description

Server and management APIs for sensor data.

Development
status

Server fully implemented. Data integration ongoing. Event detection in
planning.

Deployment
status

Server deployed to cluster. Data import and process scripts not yet.

Integration
status

Data import ongoing. Data visualization integrated in UI.

Integration
issues /

No issues regarding the integration. Data import not fully specified and
clarifications ongoing.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 21

dependencies

Next steps Deploy data import and processing to the cluster and specify the event
detection requirements.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 22

5 LƴŦǊŀǎǘǊǳŎǘǳǊŜ ŀƴŘ /ƻŘŜ hǊƎŀƴƛȊŀǘƛƻƴ

After having defined the global architecture of the beAWARE platform, focusing on its high-
level component design we turn to deployment and hosting issues, focusing on the
provisioning and operation of the infrastructure, on which the beAWARE system will run.
This includes the internal services, business services, associated repositories and external
entities (mobile applications, control centers).

The bulk of the system component is hosted on a Kubernetes (K8s) cluster managed on
.ƭǳŜaƛȄΣ L.aΩǎ ǇǳōƭƛŎ ŎƭƻǳŘΣ ŀǎ Ŏŀƴ ōŜ ǎŜŜƴ ƛƴ Figure 2, Figure 3, and Figure 4.

Figure 2: beAWARE Kubernetes cluster

Figure 3: beAWARE cluster overview

Figure 4: Kubernetes cluster worker nodes

Currently the cluster is composed of two worker nodes, and it may grow based on evolving
system needs. The K8s cluster is divided into 3 namespaces:

¶ Default (Jenkins Master)

¶ Build (Jenkins Slave)

 D7.3 ς V1.0 D8.1 ς V1.0

Page 23

¶ Prod (Deployed Applications) ς residing behind Ingress (a reverse Proxy acting as a
gateway)

In addition, there are cloud services that are used by beAWARE components, such as the
messaging bus and data repositories (Figure 5). ¢ƘŜǎŜ ǎŜǊǾƛŎŜǎ ŀǊŜ ƘƻǎǘŜŘ ƻƴ L.aΩǎ ǇǳōƭƛŎ
cloud and offer binding capabilities to all beAWARE components.

Figure 5: MessageHub cloud service

Moreover, there are components that are deployed external to the project K8s cluster,
namely the PSAP and additional control center capabilities, as well as the end-user
applications which will have their front-end deployed on mobile devices, while their backend
may still reside within the project cluster.

The Continuous Integration (CI) environment is comprised of the following components, as
depicted in Figure 6:

1. GitHub repository: all components should have a repository under the beAWARE
project (https://github.com/beAWARE-project).

2. Docker ς a docker image is created for each component.
o Generally, requires a dockerFile for each component

3. Jenkins: build, test, and deploy
o Requires a JenkinsFile for each component

o Builds are executed in separate environment (namespace) in the project's K8s
cluster Executing tasks based on Jenkinsfile

Á Pulling code from Github

Á Build artifact

Á Build Docker image

Á Push to DockerHub

Á Deploy on k8s

4. Kubernetes -IBM container services - managed cluster on which all components are
deployed

o Requires specific Kubernetes configuration for each component

https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_beAWARE-2Dproject&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=tSUN29su1y_5yZjzll2KRBv3U__kWcNxMTmV3DOQ8fI&m=AL-Ddt2hx4hsbaLwm5VBADp-Y99kj_j1gjghNsNK1yI&s=obBlae2hcVX7Gv0eGHH4VEcMmktNWI3v47_gpZm6OCA&e=

 D7.3 ς V1.0 D8.1 ς V1.0

Page 24

Figure 6: CI workflow

The automated workflow kicks in upon a new commit to the master branch in the project
github repository. Jenkins keeps track of such changes via web hooks, and initiates the
procedure as specified in the JenkinsFile. The standard procedure is to build the component
using the dockerFile, and if no errors reported, to deploy to the Kubernetes cluster, using the
specified K8s configuration. This process happens for every repository for which there is an
associated JenkinsFile. A more elaborated pictorial view of the CI workflow can be seen in
Figure 7. Some details of the kubernetes cluster used by the platform can be seen in Error!
Reference source not found..

Figure 7: CI detailed description

 D7.3 ς V1.0 D8.1 ς V1.0

Page 25

Figure 8: beAWARE Kubernetes cluster

The individual components deployed within the cluster can be seen in Figure 9Figure 9.
beAWARE code on the GitHub repository is organised on a per-component basis. The root of
the source tree is located at: https://github.com/beAWARE-project.

The code of the individual components can be found in the following links:

¶ Text Analysis moduleΥ ʆŜȄǘ ŀƴŀƭȅǎƛǎ ǘƻƻƭǎ ǘƻ ŜȄǘǊŀŎǘ ƛƴŦƻǊƳŀǘƛƻƴ ŦǊƻƳ ǘǿŜŜǘǎ ƻǊ ƻǘƘŜǊ
sources, Maven package (https://github.com/beAWARE-project/text -analysis)

¶ Text analysis on ASR outputs: Maven package (https://git hub.com/beAWARE-
project/text -analysis-asr)

¶ Automatic Speech Recognition tool: for the transcription of audio recordings sent
through the mobile app, Maven package (https://github.com/beAWARE-
project/ASR)

¶ Social Media Analysis tool: A crawler that collects tweets and pushes the relevant
ones to the bus, Maven package (https://github.com/beAWARE-project/social-
media-analysis)

¶ Social Media Annotation tool: A web application to present crawled tweets and to
annotate as (ir)relevant (https://github.com/beAWARE-project/social-media-
annotation-tool)

¶ Image Analysis tool: Performs image analysis for the beAWARE project, Python
(https://github.com/beAWARE-project/image-analysis)

¶ Video Analysis tool: Performs video analysis for the beAWARE project, Python
(https://github.com/beAWARE-project/video-analysis)

¶ Media Hub: A central hub to receive any media and forward it to the correct
component (audio/image/video), Maven package (https://github.com/beAWARE-
project/media-hub)

¶ Ontology: the beAWARE Knowledge Base Ontology (https://github.com/beAWARE-
project/ontology)

https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_beAWARE-2Dproject&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=tSUN29su1y_5yZjzll2KRBv3U__kWcNxMTmV3DOQ8fI&m=AL-Ddt2hx4hsbaLwm5VBADp-Y99kj_j1gjghNsNK1yI&s=obBlae2hcVX7Gv0eGHH4VEcMmktNWI3v47_gpZm6OCA&e=
https://github.com/beAWARE-project/text-analysis
https://github.com/beAWARE-project/text-analysis-asr
https://github.com/beAWARE-project/text-analysis-asr
https://github.com/beAWARE-project/ASR
https://github.com/beAWARE-project/ASR
https://github.com/beAWARE-project/social-media-analysis
https://github.com/beAWARE-project/social-media-analysis
https://github.com/beAWARE-project/social-media-annotation-tool
https://github.com/beAWARE-project/social-media-annotation-tool
https://github.com/beAWARE-project/image-analysis
https://github.com/beAWARE-project/video-analysis
https://github.com/beAWARE-project/media-hub
https://github.com/beAWARE-project/media-hub
https://github.com/beAWARE-project/ontology
https://github.com/beAWARE-project/ontology

 D7.3 ς V1.0 D8.1 ς V1.0

Page 26

¶ SensorThingsAPI server: A Server API for monitoring measurements from weather
forecasting and water sensors (https://github.com/beAWARE-project/sensor-
things-server)

¶ SensorThings tools: Management API for monitoring measurements from weather
forecasting and water sensors (https://github.com/beAWARE-project/sensor-
things-tools)

¶ Bus Producer API: An API that offers a service for POST requests to produce
messages to beAWARE Bus, Python (https://github.com/beAWARE-project/bus-
producer-api)

¶ Bus logger deamon: Constantly monitors the beAWARE Bus and logs messages of
certain topics to a database, Python (https://github.com/beAWARE-project/bus-
logger-daemon)

¶ Report Generation: Generates new incident reports, Maven package
(https://github.com/beAWARE-project/report -generation)

¶ K8s: BeAWARE Kubernetes applications (https://github.com/beAWARE-project/k8s)

¶ Object Storage Application sample: Applications for storing and retrieving from the
data repository, Maven package (https://github.com/beAWARE-project/object-
storage-app-sample)

Figure 9: Cluster deployments

https://github.com/beAWARE-project/sensor-things-server
https://github.com/beAWARE-project/sensor-things-server
https://github.com/beAWARE-project/sensor-things-tools
https://github.com/beAWARE-project/sensor-things-tools
https://github.com/beAWARE-project/bus-producer-api
https://github.com/beAWARE-project/bus-producer-api
https://github.com/beAWARE-project/bus-logger-daemon
https://github.com/beAWARE-project/bus-logger-daemon
https://github.com/beAWARE-project/report-generation
https://github.com/beAWARE-project/k8s

 D7.3 ς V1.0 D8.1 ς V1.0

Page 27

6 5ŜƳƻƴǎǘǊŀǘƻǊ ¦w[{ ŀƴŘ ƛƴŦƻǊƳŀǘƛƻƴ

In order to demonstrate the communication flow between the different beAWARE
components, a simple use case (UC) was implemented which will be described in detail in
this section.

For the graphical representation and monitoring of the message exchange between the
different components, a Graphical User Interface has been developed, serving as a message
logger. As can be observed in Figure 10, the GUI consists of three panels, one (left screen)
for the graphical representation of the live information flow between different components
through the communication bus, one message logger (central screen) containing information
about the messages that are published in the bus and one panel (right screen) which is used
as a simulator of the message triggers from the Mobile Application, the Crisis Classification
and the Social Media Analysis tool.

Figure 10: The beAWARE Logger Environment

In order to demonstrate the whole function of the operational prototype and the
implementation of the simple UC, a demonstrator video has been created, capturing the
whole function of the logger throughout the UC and it is available in the following link:

 http://beaware -project.eu/wp-
content/uploads/2017/12/beAWAREOperationalPrototypeFinal.mp4

Briefly, the demonstration has 6 phases:

1. A first responder uses the Mobile Application and informs the authority (PSAP)
through the beAWARE for a new incident with its coordinates and initial description.

2. An image is uploaded from the Mobile Application to beAWARE and analyzed. The
results update the incident and the PSAP is informed.

3. A video is uploaded from the Mobile Application to beAWARE and analyzed. The
results update the incident and the PSAP is informed.

http://beaware-project.eu/wp-content/uploads/2017/12/beAWAREOperationalPrototypeFinal.mp4
http://beaware-project.eu/wp-content/uploads/2017/12/beAWAREOperationalPrototypeFinal.mp4

 D7.3 ς V1.0 D8.1 ς V1.0

Page 28

4. A voice recoring is uploaded from the Mobile Application to beAWARE and analyzed.
The results update the incident and the PSAP is informed.

5. The beAWARE Crisis Classification component inserts into the beAWARE
measurements from the weather forecasting and the water sensors and then informs
the PSAP.

6. The beAWARE Social Media Analysis tool selects all the relevant to the incident
tweets.

The rest of this section contains a tutorial with descriptive screenshots in order to visualize
the function of the demonstration logger during the aforementioned phases. Specifically,
during the first phase of the UC, the trigger simulation panel is used in order to simulate the
creation of the new incident from the Mobile Application. As can be seen in Figure 11 and
Figure 12, by selecting the ά!ƭŜǊǘέ option from the drop-down menu in έ{ŜƴŘ Ǌŀǿ ƳŜǎǎŀƎŜέ
tab, a new alert message is created with coordinates and description of the incident. No
ƳŜŘƛŀ ƘŀǾŜ ōŜŜƴ ǳǇƭƻŀŘŜŘ ȅŜǘΦ ¢ƘŜƴΣ ōȅ ŎƭƛŎƪƛƴƎ ǘƘŜ ά{ŜƴŘ ƳŜǎǎŀƎŜέ ōǳǘǘƻƴ ǘƘŜ ƳŜǎǎŀƎŜ ƛǎ
sent to the Knowledge Base, which in turn sends only the location of the incident to the
PSAP. The two corresponding messages are depicted in the central panel, as can be seen in
Figure 13. By clicking on one of the messages, the body of the message is revealed. The flow
of information between the components is also depicted in the left screen.

Figure 11: Operational Prototype Demonstration: The ǘǊƛƎƎŜǊǎ ǎƛƳǳƭŀǘƻǊΩǎ ŘǊƻǇ-down menu
that creates the incident messages.

 D7.3 ς V1.0 D8.1 ς V1.0

Page 29

Figure 12: Operational Prototype Demonstration: The structure of the new incident
message (right screen) during the first phase (initial incident report).

Figure 13: Operational Prototype Demonstration: The messages that are sent to KB and
consequently to PSAP (central screen) during the first phase (initial incident report).

During the second phase, an image is uploaded from the Mobile Application to beAWARE
and analyzed. In order to do so, from the drop-down menu of the trigger simulator we
ǎŜƭŜŎǘ ǘƘŜ άƛƳŀƎŜ ǳǇŘŀǘŜέ ƻǇǘƛƻƴ ŀƴŘ ǘƘŜ ƛƴŎƛŘŜƴǘ ǊŜǇƻǊǘ ƛǎ ǳǇŘŀǘŜŘ ōȅ ŀŘŘƛƴƎ ŀƴ ƛƳŀƎŜ
as an attachment and its corresponding metadata, as can be seen on the right screen of
Figure 14. !ŦǘŜǊ ǿŜ ŎƭƛŎƪ ǘƘŜ ά{ŜƴŘ ƳŜǎǎŀƎŜέ ōǳǘǘƻƴΣ ǘƘŜ ǎƛƳǳƭŀǘƻǊ ǎŜƴŘǎ ǘƘŜ ǳǇŘŀǘŜŘ
incident report message to the bus in order to inform the KB and Image Analysis module
(TOPIC021_incident_report) for the existence of a new image. The KB in turn will inform
PSAP about the new image (TOPIC101_incident_report). The relevant messages and

 D7.3 ς V1.0 D8.1 ς V1.0

Page 30

information flow can be seen in Figure 15. Consequently, the Image Analysis module will
analyze the image in order to extract conceptual information regarding the incident. The
analysis result is saved in the KB, which updates the incident severity, probability and
certainty and informs PSAP about the incident update. Additionally, the KB requests new
title and description from the Report Generator and updates the incident. Figure 16
depicts the new messages that are exchanged after the analysis of the image.

Figure 14: Operational Prototype Demonstration: The updated incident report containing
an image as an attachment, as can be seen on the right screen, during the second phase

(image upload).

Figure 15: The messages (central screen) that are sent to KB, PSAP and Image Analysis
module after the upload of an image, along with the corresponding information flow (left

screen).

