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Executive Summary 
This deliverable reports on the basic techniques for concept and conceptual relation 

extraction from multimedia and textual content. Specifically, methods for the analysis of 

textual (texts, SMS messages, social media post and transcribed spoken language) and 

multimedia data are profoundly described in this deliverable. The goal of textual extraction 

is to extract concept and conceptual relation amongst the acquired textual information, 

while methods for mutlimedia analysis focus on the detection of concepts from visual and 

audio content.  

 

The document describes in detail the WP3 modules, which are related to T3.2 and T3.3 and 

the appropriate approaches, components, and resources that were adopted so as to 

accomplish the respective functionalities that were described in the DoA and later on the 

ones that documented from the users throughout the compiled user requirements (D7.1, 

D7.2). The deliverable introduces the basic techniques for textual and multimedia concept 

extraction that were deployed during the first phase of the project’s lifetime, for the 

implementation of the 1st prototype (M18). Furthermore, a description of the analysis 

requirements for visual (i.e. image/video), audio and text is provided and analyzed 

appropriately. While, for each module an overview of the State-of-the-Art (SoA) and a 

comparison to other approaches is included. The evaluation approaches and results are 

finally explained and demonstrated at the end of the document.  

 

More specifically, the following modules are described in further details:  
 

a) The concept extraction module from visual content (image/video), which includes 
the dynamic texture recognition and localization in videos, a fire and flood detection 
system in social media with the goal to identify people and vehicles in danger and the 
deployment of a traffic management application that estimates speed and abnormal 
events from surveillance cameras.    

b) The Automatic Speech Recognition (ASR) module, which is based on open-source 
framework CMU Sphinx and integrates expanded ASR dictionaries with missing 
words and especially location names in order to improve recognition accuracy and 
enable localization via speech transcriptions. A simple algorithm for automatic 
punctuation of speech has also been implemented in order to facilitate concept 
extraction (T3.2) based on the duration of silence intervals. An encoder has also been 
included, in order to convert input audio files into the appropriate format, as well as 
basic noise removal algorithms based on spectral subtraction have been deployed. 

c) the text analysis module, which addresses the processing of the multilingual textual 
inputs including part-of-speech and morphology tagging, lemmatization, syntactic 
and semantic parsing and the translation of the resulting linguistic representations 
into a semantic one that captures the extracted entities and events to be fed to 
beAWARE knowledge base.  
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It is worth to note, that the performance of the above modules extensively evaluated in 

terms of their accuracy and the first experimental results are encouraging to continue to 

work on this direction.  

Each partner has contributed equally to the completion of the two tasks of the WP3. UPF 

was responsible for the development and evaluation of the text analysis module (Task 3.2). 

CERTH was responsible for the development all the methodologies and modules for 

multimedia analysis as well as for the deployment of Automatic Speech Recognition (ASR) 

module (Task 3.3).  
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Abbreviations and Acronyms 

AA Activity Areas 

API Application Programming Interface 

ASR Automatic Speech Recognition 

BoW Bag-of-Words 

CAP Common Alert Protocol 

CCTV Closed Circuit TeleVision  

CNN Convolutional Neural Networks 

CRF Conditional Random Field 

CWRT CrossWords Reference Templates 

DDP-HMM Dependent Dirichlet Process-Hidden Markov Model 

DRSs Discourse Representation Structures 

DUL Dolce + DnS Ultralite 

EL Entity Linking 

EM Expectation Maximization 

EmC Emergency Classification 

EmL Emergency Localization 

EΜ Εxpectation Μaximization algorithm 

FC Fully Connected 

FN False Negative 

FP False Positive 

Fps Frames per second 

GMM Gaussian Mixture Model 

GMMs Gaussian Mixture Models 

GPD Generalized Probabilistic Descent 

GPR Gaussian Process Regression 

HMM Hidden Markov Model 

HoGP Histograms of Grassmannian Points 

HOOF Histograms of Oriented Optical Flow 

IoU Intesection over Union 

IRIs Internationalized Resource Identifies 

KB Knowledge Base 

KCF Kernelized Correlation Filters 

LAS Labeled Attachment Score 

LBPs Local Binary Patterns 

LDS Linear Dynamical Systems 

LDT Linear Dynamic Texture 

LOD Linked Open Data 

MAP Maximum a Posteriori Adaptation 

MCE Minimum Classification Error 

MCMC Markov Chain Monte Carlo 

MFCC Mel-frequency cepstrum coefficients 

MLLR Maximum Likelihood Linear Regression 
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MLP Multi-Layer Perceptron 

MST Minimum-Spanning Tree 

MTA Multilingual Text Analysis 

NER Named Entities Recognition 

NEs Named Entities 

NLP Natural Language Processing 

NN Neural Network 

ObD Object Detection 

OWL Web Ontology Language 

PCA Principal Component Analysis 

POS Part-Of-Speech tagging 

PSAP Public Safety Answering Point 

PTB Penn Treebank 

RDF Resource Description Format 

ROI Region Of Interest 

SLIC Simple Linear Iterative Clustering 

SoA State of the Art 

STOEF Spatio-Temporal Oriented Energy Features 

SVM Support Vector Machine 

TN True Negative 

TP True Positive 

UAS Unlabeled Attachment Score 

UAV Unmanned Aerial Vehicles 

UD Universal Dependency 

URL Uniform Resource Locator 

VLBP Volume Local Binary Patterns 

VQ Vector Quantization 

WSD Word Sense Disambiguation 
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1 Introduction 

 
This deliverable elaborates on the implementation of the basic techniques in WP3 during the 

first half of beAWARE project lifetime (Μ1-Μ17). Generally, the objective of WP3 is to 

provide the nessasary technological solutions that will allow beAWARE framework to 

provide early warning and decision support to authorities, PSAP operators and other 

stakeholders during pre-emergency and/or during the emergency phase. 

The current report consists of the work that has already done so far in tasks Τ3.2 (Concept 

and conceptual relation extraction from textual information) and T3.3 (Concept and event 

detection from multimedia). As such, these tasks contribute to the 3rd Milestone MS3 “First 

Prototype” for the successful completion of the first SW development cycle of the project as 

shown in Figure 1. 

 

Figure 1: WP3 tasks and timeline 

 

The tasks 3.2 and 3.3 of WP3 interact with almost all other WPs, especially with the tasks of 

WP4 - Aggregation and semantic integration of emergency information for decision support 

and early warnings generation, WP5 - Multilingual report generation, WP6 - Main Public 

Safety Answering Point for emergency multimedia enriched calls and WP7 - System 

development, integration and evaluation serving the objectives of beAWARE project.  

1.1  Objectives 

The objectives of Tasks 3.2 and 3.3 for the 1st period of the project are in aligned with the 

main goals, as they were described in the DoA, and summarised to the following: 

• Extract event-centric information from multilingual textual inputs and project them 

onto an abstract representation that can be fed into the project ontologies (WP4). 

• Develop the appropriate modules for concept and conceptual relation extraction for 

the beAWARE languages and domains. 

• Deploy module for producing an integrated structure, which can be projected onto 

ontological representations (WP4). 

• Develop computer vision and deep learning frameworks so as to detect crisis events 

in visual content (images and videos). 

• Deploy an Automatic Speech Recognition (ASR) statistical method so as to transcribe 

voice messages for all supported languages in noisy environments and inform PSAP. 
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• Utilise multimodal fusion techniques to combine metadata from audio and visual 

channels and identify higher-level events in a specific crisis spatio-temporal area. 

1.2  Results towards the foreseen objectives of beAWARE project 

In order to achieve the abovementioned objectives, heterogeneous data from multiple 

resourses were collected and analysed. The Multilingual Text Analysis (MTA) processes 

textual inputs, namely tweets from social media, messages sent via the mobile beAWARE 

application, and transcribed spoken communications, and realizes the distillation of the 

conveyed information. The extracted information is event-centric, capturing what is 

happening (flood, traffic jam, etc.), the involved/impacted entities (e.g. people, buildings, 

cars, etc.) as well as location and temporal aspects. An uploaded audio file via the mobile 

beAWARE application is received by the Automatic Speech Recognition module for audio 

analysis. The transcription will then be analyzed by MTA in order to extract concepts such as 

locations, people and goods in danger etc. Similar, an image or video, which are sending to 

the beAWARE platform via mobile application, would be analysed utilising the appropriate 

componets in order to detect people or objects in danger and estimate their severity level. 

More specifically, strong results have been obtained during the evalution of the image and 

video analysis components that include the fire and flood detection and localization 

modules, the people and vehicle detection systems and the traffic analysis and management 

pipelines, indicating further evidence of the applicability of the methods that were 

developed to extreme real life situations. ### Manos 

Additionaly, regarding the text analysis, we have evaluated the generic UD-based pipelines 

at the surface-syntactic level for English, Greek, Italian and Spanish, and at the deep-

syntactic level for English and Spanish (gold-standard reference corpora for Italian and Greek 

will be compiled during the second half of the project lifetime and the evaluation will be part 

of D3.4). Moreover, we have evaluated the English-specific pipeline, namely the Penn-

Treebank-based one, which has been developed as part of the investigations into the 

performance trade-off between generic analysis pipelines, which can be easily ported and 

reused across languages, and analysis pipelines that are specific to a given language; during 

the second half of the project, respective evaluations for Spanish, further evaluations will be 

reported. The English-specific pipeline performs better than the generic UD-based one, but 

before reaching a conclusive obsercations, we need to study further the actual impact on 

the overall performance of the analysis component in beAWARE and validate the 

observations across the different languages. 
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1.3  Future plans 

Although the evaluation process results indicate that all the components are in satisfactory 

condition, we have already planned to further elaborate and refine the proposed 

methodologies. Particularly, further ways to improve the developed visual analysis 

techniques have already been explored. These include the collection of additional training 

data to further fine tune the deep CNN architectures responsible for detection people and 

vehicles that are exposed to hazardous environments and the integration of holistic 

apparoaches in order to better analyse traffic motion patterns. Moreover, we plan to 

expand the current implementations in order to be applyied for the analysis of visual 

content from other sources, namely UAVs and fixed cameras. ## Manos 

Additionaly, we are going to empower the text analysis with a localization strategy using 

OpenStreetMap data as the underlying reference knowledge base. Also, enhanchments to 

the semantic abstraction process, to the parsing evaluation metrics, to the tweet 

normalization and adaptations for spoken language parsing and finally to the compilation of 

annotated copora have been planed to do in order to increase the performance of the 

textual analytics component in the beAWARE framework. 

1.4  Outline 

The outline of this deliverable includes a briefly presentation of user requirements for the 
analysis of the textual, visual and audio content in order to enhance decision support and 
management services in extreme weather climate events as well as a description of the 
state-of-the-art methodologies in the scientific fields of computer vision, automatic speech 
recognition and text analysis. Each task is described in a different section of this document 
(Sections 4, 5, 6), evaluated in Section 7 and concluded in Section 8 with foreseen steps in 
the near future. 
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2 Content distillation requirements 

In this Section we present the specifications and requirements for the analysis of the textual, 

visual and audio inputs considered in beAWARE. 

2.1  Image and video analysis 

Visual analysis is responsible to process images and videos obtained from static and aerial 

(e.g. UAV, satellite) cameras deployed on the pilot sites as well as reports sent via the 

beAWARE mobile application. The outcomes of the analysis process are intended to 

contribute to the detection of emergency events and the enhancement of contextual 

understanding, through the recognition of emergency indicative situations such as, traffic 

bottlenecks, flooded areas, fires, elements at possible risk (e.g. people, vehicles), etc. For 

that purpose, various compute vision and machine learning techniques have been deployed 

to meet the requirements that have been described formally in D2.1. In Table 1 a list of such 

requirements relative to visual analysis is presented. Many of these requirements are 

included also in D2.3 that addreses pilot use cases for the first prototype. 

Table 1: Requerements relative to visual analysis. 

UR# UC# Requirement name Requirement description 

UR_111 102 

 

Detect flooded 

elements from video 

Provide authorities with the ability to detect and 
count flooded elements (e.g. cars and people 
inside the river)from video and images sent from 
mobile phones  and social media  

UR_114 102, 103, 106 

 

 

Detect water depth 

and velocity 

Provide authorities with the ability to detect 
water depth and water velocity from video and 
images sent by the mobile app and social media 

 

UR_118 106 River overtopping Provide authorities/citizens with the ability to 
know if the river level is overtopping predefined 
alert thresholds  

UR_123 106 Detect embankment 

exceeding 

Provide authorities with the ability to detect 
from video, automatically (fixed and mobile 
cameras, social media and mobile app) , if a river 
embankment is overtopping and/o breaking 

UR_201 201, 204 Detection of people 

and goods in danger 

Display information authorities/first responders 

to detect people, cars and buildings in danger. 

UR_205 201-202-204 Analysis of advancing 

fire 

Provide authorities/first responders with an 

analysis of the the advancing fire (flame 

progression, height and length). 



   D3.3 – V0.7 D2.1 – V1.0  

 

Page 18 

UR# UC# Requirement name Requirement description 

UR_207 201,202,204 

 

Aerial images Display authorities/first responders to visualize 

aerial images of the smoke and the trajectory 

flames. It will provide information about the 

extension and the damages (kind of damages, 

and so on), the tracking of the fire, vehicles and 

people around the spot, in order to find out 

possible suspects or victims. Furthermore, if 

these aerial images provide thermal information 

it can be used for looking over the fire perimeter 

once it has been extinguished, in order to locate 

sleeper fire and to avoid possible reproduction.  

This aerial images are a must, because the use 

case is in a forest, and we have not references in 

the forest, the only  tool that can help the 

coordination center and first responders are 

aerial images to have information about forest 

fires (extension, direction of fires, damages, 

appropriate mobilization of resources, an soon) 

UR_305 303,  304,  305 Possible locations for 

incidents 

Display to the authorities’ visual information 

about possible locations in the city (or outside 

the city) where a situation is more likely to 

develop that will require rescue team 

intervention (for example, based on past 

experience, traffic jam and/or accidents will be 

more likely to occur at a main street intersection/ 

public park/ entrance to hospitals or banks… 

etc.).  In such cases a decision might be made to 

send rescue teams in advance to shorten 

response time if/when an incident occurs 

UR_315 303,  304 Traffic Status Display to the authorities to monitor the current 

traffic situation so that they can decide where to 

direct the first responders or inform them which 

roots to avoid 

UR_316 305 Capacity of relief 

places 

Provide to the authorities the current state of the 

available capacity of all relief places provided to 

the public 

 

In order to meet the aforementioned requirements, the visual analysis components are 

expected to deploy relevant computer vision techniques for image classification, object 

detection, semantic segmentation, dynamic texture recognition and localization and motion 

analysis. The current version of the visual analysis components addresses many of the 

requirements presented above while the remaining ones are scheduled to be addressed by 
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future versions that will be implemented for the second and third prototype releases. More 

specifically related to UR_111 and UR_201, techniques for the analysis of video samples and 

images have been developed and examined later in Section 4.1  in order to localize targets in 

immediate inside hazardous regions. Additionly, we describe in Section 4.2 how spatio-

temporal information is also leveraged in order to localize flooded or burning regions inside 

images and throughout video frames. For the purpose of meeting the UR_305 and UR_315 

techniques for the analysis of static camera traffic videos from surveillance cameras has 

been developed so as to detect the traffic jam caused by power outage (traffic lights not 

working) or when many people leaving the city for seaside. Vehicle discrimination and traffic 

density could be determined throughout regular intervals of specific time periods. In order 

to detect the level of occupancy inside a place of relief as required in UR_316 the object 

detector described in detail in Section 4.1  is deployed so that people counting can 

thereafter take place. 

UR_114, UR_118 and UR_123 related to static camera footage analysis for the monitoring 

and analysis of the water's depth are not currently addressed in this version but there are 

future plans that will be explored in order to achieve this functionality. The same applies to 

UR_205 and UR_207 which are related to the analysis of images and videos captures from 

UAV. 

2.2  Audio analysis 

The User Requirements that are relevant to Automatic Speech Recognition, as extracted 

from D2.1, are presented in Table 2. In all requirements, ASR has a partial contribution as 

will be described in detail in the following paragraph. It should be mentioned that, after 

discussions with end users, the ASR module will be used for the transcription of emergency 

audio recordings and not for online transcription of audio calls. Thus, in the following we will 

be refering to audio recordings only.  

Regarding the localization of audio recordings (UR_107, UR_110, UR_333), there are two 

ways to extract location information.The first is geolocalization through gps trace, which is 

sent by the mobile device and the other one is semantic extraction of location information 

from audio trancriptions, which is performed by the MTA. The contribution of the ASR 

module in the second case is the transcription of speech to text in order to enable MTA to 

extract location information. Regarding the detection of people and goods in danger 

(UR_113, UR_201, UR_306, UR_318, UR_319) the ASR will also have the same contribution, 

as described previously, by providing the necessary text transcriptions to MTA.  

 

Requirements UR_129, UR_224 are addressed in the sense that MTA is extracting notions 

from all supported languages (English, Spanish, Italian, Greek) and captures extracted info 
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into English in order to be stored in the KB. Again, the ASR has the same contribution as 

described previously. 

 

Table 2: User Requirements for audio analysis 

UR# UC# Requirement name  Requirement description 

UR_107 102,103, 

104, 

105,106 

Localize video, audio  

and images 

Provide authorities with the ability to localize 
videos, audio and images sent by citizens from 
their mobile phones 
 

UR_110 102 

 

Localize calls Provide authorities with the ability to localize 
Phone Calls to an emergency number 
concerning a flood event 
 

UR_113 102 

 

Detect element at 

risk from calls 

Provide authorities with the ability to detect 
the number of element at risk andthe degree 
of emergencyfrom emergency calls 

UR_129 All Automatic 

translation from a 

foreigner applicant 

Make easy the communication between 
people with different languages 

UR_201 201, 204 Detection of people 

and goods in danger 

Display information authorities/first 

responders to detect people, cars and 

buildings in danger. 

UR_222 201,202 Filter of the 

emergency messages 

Transfer emergency calls by writing (only 
minor emergencies or only information call). 
The aim is to save time operator and do not 
lose emergency calls 

UR_224 201,202 Automatic 

translation from a 

foreigner applicant 

Make easy the communication between 
people with different languages 

UR_306 303, 305, 

306 

Number of people 

affected 

Provide the authorities an estimation of the 

people that might be affected from the 

phenomenon and in which areas 

UR_318 303, 306 Trapped citizens Allow authorities to know if there are people 

trapped (e.g. in an elevator) and display where 

UR_319 303, 306 Trapped elders at 

home 

Allow authorities to know if there are elder 

people trapped in houses without an A/C and 

display where 
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UR# UC# Requirement name  Requirement description 

UR_333 304, 305, 

306 

Localize calls Provide authorities with the abilityto localize 
Phone Calls to an emergency number 
concerning citizens who are trapped 

 

As far as audio analysis is concerned, the aforementioned requirements have been 

addressed in 1st Prototype of beAWARE system, by developing an ASR module able to 

transcribe audio in all four supported languages and integrating it in beaware platform, in 

order to receive audio files along with location, language and other relevant information, 

and communicate analysis results to MTA. However, in order for proper semantic extraction, 

speech recognition accuracy should be as accurate as possible. Thus, recognition accuracy 

will be improving throughout all the developing face until the second prototype, by adapting 

acoustic models to new recordings available, by expanding dictionaries and improving 

denoising algorithms. Specifically, for localization, the available language models already 

contain major location names (cities, districts) but CERTH has also started to expand ASR 

dictionaries in order to include as many location names as possible. However, this is an 

ongoing process and will be completed in the second prototype.   

 

2.3  Text analysis  

Text analysis addresses the processing of the multilingual textual inputs considered within 

the beAWARE system, that is, social media posts and messages (textual and transcribed 

calls) sent via the mobile application, and the extraction of information that contributes to 

situational awareness, such as what is happening (e.g., “an overflow”), where (e.g., “in 

Matteotti square”), what objects are involved (e.g., “sewers”), and so forth. The overall end 

goal is to avail of the real-time communication channels offered by social media and by the 

beAWARE mobile application in order to provide authorities better insights into the 

unfolding crisis, the elements at risk and the degree of emergency. 

The following tables (Table 3 to Table 5) outline an indicative, but not exhaustive list, of 

information pertinent to the three pilots addressed with beAWARE based on the compiled 

Use Cases (UCs), as described in D2.1 and the refinements worked out in view of the first 

prototype, as reflected in D2.3. The “Message types” column lists indicative message 

categories that are of relevance for the emergency under consideration, while the “relevant 

notions” column outlines a breakdown of pertinent notions; indicative example inputs are 

shown in the third column. 
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Table 3: Examples of flood-pertinent information from text 

Message types Relevant notions (events, objects, …) Exemplar inputs 

▪ generic flood-related 

messages 

▪ viability-related 

messages 

▪ people in danger 

▪ animals in danger 

▪ river overtopping  

▪ river breach 

▪ bridge obstruction 

▪ urban drainage 

▪ … 

events (flood, overflow,  crack, 

interrupt, damage, etc.);  

infrastructure (streets, sewage 

network, bridges, airports, electricity 

& water supply network, buildings, 

etc.); people; animals; objects (cars, 

trunks, dumpsters, etc.); 

transportation (train, subway, bus 

network); anti-flooding devices 

(levees, embankments, etc.); rain; 

water level; … 

▪ “Matteotti square is flooded.” 

▪ “Cars and dumpsters transported 

by the flow.” 

▪ “The embankment at Angeli 

bridge shows cracks.” 

▪ “Subway flooded. A car is trapped 

inside.” 

▪ “Sewer surcharge at Matteotti 

square.” 

▪ “Water has reached the level of 

cars. Traffic is interrupted.” 

▪ … 

 

Table 4: Examples of fire-pertinent information from text 

Message types Relevant notions (events, objects, …) Exemplar inputs 

▪ generic fire-related 

reports (including 

possible causes, 

affected area, etc.) 

▪ viability reports 

▪ people in danger 

▪ buildings in danger 

▪ animals in danger 

▪ … 

events (fire, smoke,  interrupt, 

damage, evacuate, etc.);  people; 

animals; objects (cars, buildings, , 

etc.); traffic; weather aspects 

(temperature, wind, etc.); 

personal/material damages’ ; … 

▪ “I see smoke in Albufera national 

park.” 

▪ “The fire is heading to Pinedo.” 

▪ “The fire may get quickly out of 

control. There are very strong 

winds in the area.” 

▪ “About 20 square meters burned 

so far, mostly grass and scrubs.” 

▪ “Houses are in danger.  We need 

to evacuate.” 

▪ … 

 

Table 5: Examples of heatwave-pertinent information from text 

Message types Relevant notions (events, objects, …) Exemplar inputs 

▪ generic heatwave-

related reports 

▪ places of relief 

▪ people in danger 

▪ traffic jam problems 

▪ electricity problems 

▪ buildings with 

problems  

▪ … 

events (power outage, traffic jam, 

etc.); infrastructure (places of relief, 

hospitals, etc.); transportation (bus, 

train, etc.); people; objects (cars, 

traffic lights; capacity; weather 

aspects (temperature, heat, etc.); …; 

… 

▪ “Jammed in Toumpa’s relief place. 

Why do they keep bring more 

people here?” 

▪ “The relief place in Toumpa is 

full.” 

▪ “Man with breathing problems 

trapped in elevator.” 

▪ “Power outage. The traffic lights in 

Tsimiski Street don’t work.” 

▪ “Stuck in traffic.” 

▪ … 
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As illustrated, information from textual inputs spans a variety of considerations and, thus, 

incidents that can be of relevance during the management of flood, fire or heatwave 

emergencies. In order to support the necessary conditions, namely: 

- detection of elements at risk; 

- localization of reported incidents; 

- estimation of risk of emergency, 

that underpin the user requirements as far as information extraction from text inputs is 

concerned across all three types of climate emergencies, as delineated in D2.1, text analysis 

needs to afford the means to support an adequate level of understanding and reasoning 

over the textual information. This translates to the requirements described in the following 

subsections. 

2.3.1   Frame-based knowledge extraction 

The results of text analysis are fed to the beAWARE knowledge base (KB), where semantic 

integration and reasoning take place. In order to enable the semantic integration of the 

information extracted from textual inputs, so that authorities can have a homogenous view 

of the unfolding crisis, and, subsequently, the semantic reasoning over the involved 

incidents and involved vulnerable objects, so as to further facilitate authorities in their 

decision making, text analysis needs to effectively extract entities and the relations between 

them.  

In practical terms, this amounts to the identification of semantic frames (n-ary relational 

contexts), their participants as well as the semantic roles of these participants. For example, 

given the input “The levee at Angeli bridge has collapsed”, text analysis needs to identify 

“levee” and “Angeli bridge” as participants of the mentioned collapsing event; moreover, it 

needs to qualify “levee” as the entity that undergoes the collapsing and “Angeli bridge” as 

the place where the collapse happened, through the assignment of respective roles, namely 

that of “patient” and “location”. It is important to stress that the accurate identification of 

the semantic roles is of equal importance to that of the participants in order to effectively 

capture the communicated semantics. If for instance, in our running example, “Angeli 

bridge” was the participant identified as the “patient” then this would mean that it is the 

bridge that collapsed, not the levee, a very different meaning and with very different, and 

crucial, implications within the crisis management context of beAWARE. 

In the current implementation, as described in Section 6, the identification of relational 

contexts and their participants reflects directly the dependencies extracted by means of 

deep parsing, that is, no further processing is taking place in order to consolidate the 

resulting text analysis frame-based representations and ensure their semantic consistency 

and coherency. As a result, there is room for inaccuracies in the identification of both the 



   D3.3 – V0.7 D2.1 – V1.0  

 

Page 24 

roles of participants (such as the above mentioned one, about the bridge having collapsed) 

as well as participants themselves (e.g. missing altogether the fact that “levee” participates 

in the collapse event, hence resulting not knowing what has collapsed). In the next versions 

that are planned for the second and third prototype releases, consistency enforcing 

strategies will be incrementally investigated for mitigating such phenomena and ensure 

robust and meaningful extraction. 

2.3.2   Entity linking and disambiguation 

The afore-described frame-based representations do not capture fully the underlying 

meaning though, unless the semantics of the identified relational contexts and their 

participants is determined. To accomplish this, the identity of Named Entities (NEs) 

mentions, i.e. that is mentions of proper names, needs to be determined, and the sense 

(meaning) of nominal entities is designated. Text analysis thus needs to determine, whether, 

for instance, a mention of “Matteotti” refers to Matteotti square in Vicenza or to the Italian 

politician Giacomo Matteotti; or, whether “Valencia” refers to the city of Valencia in the 

Iberian Peninsula or, among others, to the borough Valencia in Pennsylvania, United States, 

the football club of Valencia or the American, alternative rock, band Valencia, and so forth. 

Likewise, text analysis needs to distinguish whether the mention “bank” (e.g. in an input like 

“the water has reached the bank”) refers to shore of a river or to a financial institution 

located in the affected area.  

The designation of the underlying meanings is realized by means of reference (links) to 

respective sense (meaning) repositories, namely lexical and structured knowledge resources, 

such as WordNet1, BabelNet (Navigli & Ponzetto, BabelNet: The Automatic Construction, 

Evaluation and Application of a Wide-Coverage Multilingual Semantic Network. Artificial 

Intelligence, 2012), DBpedia2 (which captures Wikipedia contents), etc. In the current 

implementation, linking against DBpedia is used for both entity linking and disambiguation 

(see Section 6).  Towards the 2nd prototype, linking against BabelNet will be incorporated, in 

order to additionally avail of the cross-resource (including among others, WordNet, 

Wikipedia, GeoNames, VerbNet3) and the cross-language links it provides.   

2.3.3   Location mentions recognition & geotagging 

The ability to recognize mentions of places in textual inputs so as to determine the spatial 

context of the mentioned incident(s) is a key aspect when dealing with events, and even 

more so, within application contexts such as that of beAWARE, where the incoming reported 

                                                      

1 https://wordnet.princeton.edu/ 
2 http://wiki.dbpedia.org/ 
3 https://verbs.colorado.edu/verbnet/ 
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incidents need to be spatially clustered and positioned on the PSAP map. It is important to 

note here that for the considered textual inputs, there are two sources of location 

information. The first consists in coordinates metadata provided by the Twitter API, 

assuming that the user has turned on this option, and by the mobile application, for text 

messages and calls, provided the user device affords this capacity; besides availability 

considerations, it is worth keeping in mind that the location metadata do not necessarily 

coincide with the locations pertinent to the incidents reported in the message. The latter, 

that is mentions of place name in the message contents, is the second source of location 

information and the one of interest for text analysis purposes. 

 
Although the processing of locations falls under the aforementioned NE recognition and 

entity linking tasks, its significance within the application context of beAWARE and the need 

for affording a wide coverage that goes well beyond the typical categories that are 

considered in these tasks (i.e., countries, cities, rivers, popular monuments, etc.), renders it a 

distinct requirement on its own. In particular, places of potential interest include roads, 

highways and bridges, public transportation network pertinent ones, such as bus, train and 

subway stations and stops, social infrastructure and amenities, such as hospitals, relief 

places, schools, parks and squares, cultural heritage monuments, places relevant to water, 

gas and electricity supply and distribution networks, to name but a few, including business 

names.  

 

The breadth of places considered impacts not only the recognition but also the resolution of 

the identity and geographical coordinates of place mentions, as, the typically used reference 

resources, also lack the coverage required. DBpedia, for instance, misses key landmarks of 

the three pilot sites, namely Valencia, Vicenza, and Thessaloniki, or provides a very partial 

only coverage. For example, Angeli bridge (“ponte degli Angeli” in Italian) is not part of 

DBpedia, neither in its English version, where this is somewhat unsurprising given that the 

coverage for non-English contents is lower compared to English ones, but nor on the 

localized Italian version, where one would expect to find more localized information. 

Tsimiski street (“οδός Τσιμισκή” in Greek), a major avenue in Thessaloniki, is contained in 

DBpedia, but neither of the equally major, crossing, streets have an entry. As a result, there 

cannot be disambiguation through linking, nor any availing of possibly relevant interlinked 

datasets (e.g. GeoNames4) in the Linked Open Data (LOD) cloud5.  

 

In the current implementation, as described in Section 6, the focus has been on developing a 

basic framework for the recognition of place/location candidates and their preliminary 

                                                      

4 http://www.geonames.org/ 
5 https://lod-cloud.net/ 
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linking, using DBpedia. Towards a more comprehensive and flexible recognition of place 

names and their geotagging, investigations will focus on a more intelligent location 

candidates identifications and on their linking against linked resources that afford the 

necessary coverage, namely OpenStreetMap6 data, which preliminary on-going explorations 

have shown to meet the beAWARE needs.  

2.3.4   Intra- and cross-language abstraction 

Abstracting away from language specificities and distilling a structured representations of 

the information conveyed in the textual inputs is crucial in order to effectively cope with the 

richness of natural language and to accurately capture the intended meaning across 

phrasing variations. For instance, input messages reporting that “the sewers are flooded” 

and that “the drainpipes have overflowed” should result in the same normalised semantics-

wise incident description, i.e. the flooding of the sewers. Likewise, for idiomatic expressions, 

such as “raining cats and dogs” and “στο κόκκινο ο υδράργυρος”, which literally translates 

to “mercury in red”, that should result in the extraction of a downpour and a high-

temperature event respectively. However intra-language abstraction is not sufficient; given 

the multilingual application context of beAWARE and in order to enable the integration and 

subsequent reasoning over information originating in messages written in different 

languages, the aforementioned abstraction needs to further extend across languages.  

2.3.5   Tweet normalization 

The use of non-standard words (e.g., slang language, informal abbreviations, phonetic 

substitutions, alphanumeric tokens), misspelled words, hashtags, URLs, emoticons, 

usernames, etc., along with the frequent occurrence of ungrammatical sentence structures, 

make Twitter posts extremely noisy compared to typical written language (e.g. newspaper 

articles), necessitating their normalization prior to their analysis. Though not all of pertinent 

aspects impact analysis to the same extent, each comes with its own challenges. Hashtags, 

for example, may appear anywhere within a tweet, making it difficult to determine whether 

or not they form, linguistically-speaking part of the sentence structure; this is further 

aggravated by the challenges encountered in their segmentation, as the can be composed of 

one or more words, or even entire phrases, written without whitespaces or any obvious and 

consistent demarcation (camel case for instance, though frequent, is not a norm). 

2.3.6   Open-domain analysis 

Last but not least, and underlying all analysis aspects considered, is the need for decoupling 

the pertinent analysis tasks, and thus their performance, from domain-specific assumptions 

                                                      

6 http://openstreetmapdata.com/ 
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and enabling instead to analyze and extract information in an open-domain manner that 

considers the contents of the targeted inputs in their entirety and not selectively. Although 

domain-specific approaches can achieve very high accuracy, and overlooking re-usability and 

scalability considerations, the sheer gamut of situations that may be reported and be of 

relevance during the management of an emergency, renders tuning to closed-lists of 

predefined incidents, locations and impacted objects fairly impractical.  
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3 Relevant Work 

In this section, we elaborate on the work that exists in the literature and is related to the 

tasks that are mentioned in WP3. For that purposes, we will see relevant work for: (i) visual 

concept detection, (ii) audio concept detection and (iii) textual concept detection. 

3.1  Visual concept detection  

State-of-the-Art for visual concept detection may include the analysis both image and video 

samples. Flood and fire detection will take place so as to contribute to PUC1 and PUC2, while 

traffic management is deployed so as to contribute to PUC3. Bellow, we analyze relevant 

work that focuses on these domains and more specifically: fire and flood detection in images 

and videos and then traffic management. 

3.1.1   Fire and flood detection in social media images 

Millions of images are daily uploaded on social media, while a great deal of them might 

include the existence of a crisis or emergency event. Taken this into account and inspired 

from the recent advance in image understanding, we suggest a novel framework that 

combines several technologies so as to detect and score the danger that people and vehicles 

might be in fire and flood scenarios solutions.  

Semantic image segmentation SoA has also tend to use deep CNNs as well (Long, 

Shelhamer, & Darrell, 2015), (Ronneberger, Fischer, & Brox, 2015) by simply changing the 

objective of the classifier and label each pixel in the image individually, leading to a 

classification mask for the whole image instead of a recognition class. As far as security and 

safety domains are concerned, we scarcely find a technique that uses a deep CNN, as there 

are no groundtruth available masks and the training of these models is infeasible. A worth-

to-note technique which performs fire detection in social images with the use of color and 

texture attributes was presented in (Chino, Avalhais, Rodrigues, & Traina, 2015).  

Object detection on the other hand has numerous applications: autonomous vehicles, smart 

video surveillance, facial detection, ambient assisted living, etc. Naturally, deep CNN 

architectures were thoroughly examined for this. Early works such as (Girshick, 2015) include 

multi scale bounding box proposal generation techniques like Selective Search [13], as a 

feeding mechanism of candidate boxes to deep classifiers. The trend later became to 

incorporate this function into single shot object detectors, using end-to-end deep 

architectures (Ren, He, Girshick, & Sun, Faster r-cnn: Towards real-time object detection 

with region proposal networks, 2015), (Redmon, Divvala, Girshick, & Farhadi, 2016), (Liu, et 

al., 2016). Those models achieved a better trade-off between accuracy and speed. In a 

previous work of ours (Avgerinakis, et al., Intelligent traffic city management from 
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surveillance systems (CERTH-ITI), 2017) we have proposed a novel scheme to detect vehicles 

and pedestrians from traffic surveillance cameras. The same framework has also been 

deployed in UA-DETRAC vehicle detection dataset (Wen, et al., 2015) achieving a really high 

detection rate. 

3.1.2   Fire and flood detection in video samples 

Dynamic texture recognition, localization, and more generally dynamic scene analysis in 

videos constitutes an intriguing topic within the computer vision community, due to its wide 

applicability in many scenarios. The term dynamic texture typically refers to moving 

textures, i.e. visual entities undergoing small, stochastic motions, encountered in real world 

indoor and outdoor environments. Current work mainly focuses on outdoor scenarios where 

a crisis event might occur (i.e.  fire in a forest, a flooded river etc.), so we mostly examine 

classes of this category, even though, several instances of dynamic textures appearing in 

indoors videos, are also examined so as to prove our algorithm's efficacy and generalization. 

The automatic recognition of such textures has recently attracted attention, as it can provide 

a significant contribution to many real-world outdoor applications involving: scene analysis 

containing objects with high varying textures (e.g. water, smoke, trees), security applications 

for the prevention of a possible terrorist act and surveillance systems, responsible for the 

avoidance of natural disasters (e.g. fire in the forest or floods).  

Dynamic texture recognition methods can roughly be separated into two main categories 

according to their adopted underlying model. The first category refers to Generative models 

which involve the extraction of global features throughout video sequences and their 

modeling is based on some hidden parameters (Fritz, Leibe, Caputo, & Schiele, 2005). Recent 

works such as (Doretto, Chiuso, Wu, & Soatto, 2003) use the spatiotemporal dynamics to 

train a Gauss-Markov recognition model, while (Chan & Vasconcelos, 2009) propose an 

expectation maximization (EM) algorithm to train the parameters of a statistical model. In 

(Chan & Vasconcelos, 2008) a Linear Dynamic Texture (LDT) scheme is proposed in order to 

represent a stochastic model of different appearance and motion dynamics. Lately, Linear 

Dynamical Systems (LDS) raised a lot of attention within this category, with the work of 

(Mumtaz, Coviello, Lanckriet, & Chan, Clustering Dynamic Textures with the Hierarchical EM 

Algorithm for Modeling Video, 2013) being a representative example. In their work, an 

hierarchical EM algorithm is deployed in order to cluster and learn the statistical model of 

the motion dynamics. LDS has recently been extended into a stabilized higher order LDS 

(shLDS) in (Dimitropoulos, Barmpoutis, Kitsikidis, & Grammalidis, 2017), who introduced 

Histograms of Grassmannian Points (HoGP). However, despite its high accuracy rates the 

method is computational costly, making it inappropriate for real-time applications. 
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While generative models seem quite promising for representing dynamic textures, their 

application to classifying the wider set of motion patterns found in dynamic scenes has been 

shown to perform poorly (Shroff, Turaga, & Chellappa, 2010). The complex, stochastic 

character of dynamic textures makes their precise modeling very challenging, so a second 

category of dynamic texture representation, namely Discriminative models has been 

considered. This category is based on the extraction of local, spatio-temporal features to 

describe moving texture dynamics by estimating local variations and statistics of intensity 

and optical flow values. Early techniques involved the accumulation of local spatio-temporal 

features using appearance features like GIST (Oliva & Torralba, 2001), motion histograms, 

such as the Histograms of Oriented Optical Flow (HOOF) (Chen, Zhao, Salo, Rahtu, & 

Pietikainen, 2013), swarm-intelligence (Kaltsa, Briassouli, Kompatsiaris, Hadjileontiadis, & 

Strintzis, 2015), spatio-temporal oriented energy features (STOEF) (Derpanis, Lecce, 

Daniilidis, & Wildes, 2012), and their successful and highly accurate Bag-of-Words (BoW) 

extension proposed in (Feichtenhofer, Pinz, & Wildes, 2014), named spatial energies. 

However, the coarse quantization of GIST and the rotation invariance of HOOF do not allow 

them to detect dynamic textures with accuracy, while on the other hand, the highly accurate 

STOEF, spatial energies and swarm dynamics suffer from computational efficiency making 

them inappropriate for real case implementations, such as surveillance and security 

scenarios. 

Accurate texture classiffication has been achieved in images using Local Binary Patterns 

(LBPs), whose promising results have led to a number of its extensions as a dynamic texture 

descriptor. Volume Local Binary Patterns (VLBP) (Zhao & Pietikainen, 2006) and LBP-TOP 

(Zhao, Ahonen, Matas, & Pietikainen, 2012) are among the earlier methods, however they 

can easily reach a dimensionality of 214 to 226, which is impractical in real-world applications 

involving large amounts of data that are to be processed in near real time. More recently in 

(Mettes, Tan, & Veltkamp, Water detection through spatio-temporal invariant descriptors, 

2017) a hybrid spatio-temporal extension of LBP was introduced, which stacks the descriptor 

in time to obtain temporal information. Even though, the method achieved very high 

accuracy rates when discriminating between water and non-water scenes, its highly tailored 

character to exclusively water class, makes it inappropriate for more general classiffication 

and localization scenarios. 

3.1.3   Traffic analysis and management 

Smart city technologies for assistive transportation and safe driving, make up one of the 

most intriguing domains of computer science and have attracted significant attention during 

the last decade. Video surveillance, along with various other types of monitoring 

infrastructure provide a huge amount of exploitable data for extracting optimal traffic 
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management rules, increasing safety in busy streets, detecting or predicting and preventing 

accidents and numerous other applications of traffic monitoring. Moreover, increasing 

industry trends towards autonomous driving, vehicles, and transportation in general, is 

changing the landscape of traffic analysis. The visual content from traffic cameras will, in the 

near future, also be used to manage autonomous vehicle navigation, by sending information 

about events elsewhere in the city, traffic conditions, pedestrian congestion, to optimally 

guide vehicles. The automated analysis of visual traffic data is necessary to extract useful 

information in a reasonable amount of time and with minimum human involvement in these 

cumbersome and extremely time consuming tasks. Many computer vision algorithms have 

already been developed for the automated analysis of traffic video data. Examples such as 

automatic vehicle detection and tracking, speed and traffic flow analysis, detection of 

abnormal events, have been developed and their levels of accuracy are continuously 

increasing. A big challenge, however, lies in the development of fast and computationally 

efficient methods to be used in actual real world scenarios that demand near real time 

solutions. 

Speed Estimation 

Traffic flow analysis from surveillance cameras can be decomposed to many different 

aspects of traffic understanding, such as vehicle detection and tracking, counting, traffic 

level classification and speed estimation. We focus here on a brief review of the existing 

methods for speed estimation. This task involves the translation of the displacement of 

pixels that belong to vehicles, into the real distances traveled and so, it relies heavily on 

proper camera calibration. As a result, most of the proposed algorithms focus on techniques 

for accurate retrieval of camera intrinsic and extrinsic parameters, as well as inference of the 

scene scale since we are only interested in the analysis of videos taken from a single 

monocular camera. 

Methods are generally categorized into semi-automatic and fully-automatic. In the first case 

most of the calculations are performed automatically, but a user’s manual input is required 

usually in the form of some known distance in the scene. In a method from this category, 

(Nurhadiyatna, et al., 2013) detected and tracked the vehicles using GMM background 

subtraction and Kalman filters, calibrated assuming a zero pan pinhole camera model. In (He 

& Yung, 2007) the calibration is based on patterns of lane markings on the road and image 

rectification to cope with perspective projection. A simple method using optical flow to 

compute displacement of pixels and relaxation of the perspective projection effect in (Lan, 

Li, Hu, Ran, & Wang, 2014) measured the speed inside a rectangle region of interest using 

known lane width as reference.  
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There are fewer works on fully automatic camera calibration methods. In (Dubská, Herout, & 

Sochor, Automatic Camera Calibration for Traffic Understanding., 2014) vanishing point 

detection from vehicle movement using a diamond space accumulator is performed and 

scale inference is computed by matching statistically detected vehicles’ dimensions to mean 

dimensions of real vehicles. (Sochor, Juránek, & Herout, 2017) extends the previous work by 

matching pre-made 3D vehicle models to the detected vehicles’ 3D bounding boxes. An 

evolutionary algorithm for camera parameter extraction is used in (Filipiak, Golenko, & 

Dolega, 2016), assuming constant speed of vehicles, and its accuracy is increased by license 

plate detection. 

Traffic anomaly detetection 

Methods dealing with anomaly detection in traffic videos can roughly be separated into two 

main categories. The first category comprises of methods that apply their models on raw 

image data, such as pixel location or other low level features. One recent work in this 

category is that of (Cheng, Chen, & Fang, 2015), using hierarchical feature representations 

and a Gaussian Process Regression (GPR) framework to build a low-level and a high-level 

codebook respectively. Anomalies are then detected, after the integration of local and global 

anomaly detectors. Probabilistic topic models are also proposed in a variety of works to 

capture spatiotemporal changes in traffic scenarios. The most typical works include the 

hierarchical Bayesian models of (Wang, Ma, & Grimson, 2009) which model the scene in two 

layers, the new Markov Clustering Topic Model of (Hospedales, Gong, & Xiang, 2012), the 

Probabilistic Latent Sequential Motifs introduced by (Varadarajan, Emonet, & Odobez, 2013) 

and the Dependent Dirichlet Process-Hidden Markov Model (DDP-HMM) framework 

proposed in (Kuettel, Breitenstein, Gool, & Ferrari, 2010). In all cases anomalies are 

determined in a probabilistic global framework. The main drawback of all these methods is 

their computational cost, which is usually high due to the complexity of their models. At the 

same time they deal with modeling at the pixel level, ignoring more complicated structures 

such as the objects themselves, thus missing important information. 

The second category involves methods based on trajectory extraction and analysis. Objects, 

or even pixels are firstly localized and tracked to obtain their patterns, which are then 

clustered or modeled to represent the dominant underlying motions. A work in this category 

is that of (Saleemi, Shafique, & Shah, 2009) where object trajectories are modeled using 

kernel density estimations, while a unified Markov Chain Monte Carlo (MCMC) sampling-

based scheme is then used to generate the most likely paths. Anomalies are detected based 

on the estimated probability density of the next state by comparing the actual 

measurements of objects with the predicted tracks. A different approach is followed in 

(Jiang, Yuan, Tsaftaris, & Katsaggelos, 2011), where three different levels of semantics are 

considered after tracking all moving objects in the video. Rules of normal events are 
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automatically extracted at each level and anomalies are defined as the events deviating from 

these rules. In (Jeong, Yoo, Yi, & Choi, 2014) a collection of trajectories is sent as an input to 

a two-stage inference model based on a probabilistic framework, while in (Yang, Gao, & Cao, 

2013) trajectory segmentation and multiinstance learning are used for the detection of local 

anomalies. Finally, trajectory clustering and a single class Support Vector Machine (SVM) 

framework is used by (Piciarelli, Micheloni, & Foresti, 2008). 

3.2  Automatic speech recognition  

3.2.1   Speech recognition methodologies 

According to (Jadhav & Pawar, 2012) and (Karpagavalli & Chandra, 2016), speech recognition 

methodologies are broadly classified into three approaches, namely, acoustic-phonetic 

approach, pattern-recognition approach and artificial intelligence approach. 

3.2.1.1 Acoustic-Phonetic Approach 

This approach is based on acoustic phonetics that postulates that there exist finite, 

distinctive phonetic units in spoken language. The phonetic units are characterized by a set 

of acoustic properties that are manifested in the speech signal, or its spectrum, over time. 

The first step in the acoustic phonetic approach is a spectral analysis of the speech combined 

with a feature detection that converts the spectral measurements to a set of features that 

describe the broad acoustic properties of the different phonetic units. The next step is a 

segmentation and labeling phase in which the speech signal is segmented into stable 

acoustic regions, followed by attaching one or more phonetic labels to each segmented 

region, resulting in a phoneme lattice characterization of the speech. The last step in this 

approach attempts to determine a valid word (or string of words) from the phonetic label 

sequences produced by the segmentation to labeling (Anusuya & Katti, 2009). 

3.2.1.2 Pattern Recognition Approach 

The pattern-matching approach involves two essential steps namely, pattern training and 

pattern comparison. In the pattern-comparison stage of the approach, a direct comparison is 

made between the unknown speech with each possible pattern learned in the training stage 

in order to determine the identity of the unknown speech. 

The essential feature of this approach is that it uses a well-formulated mathematical 

framework and establishes consistent speech pattern representations, for reliable pattern 

comparison, from a set of labeled training samples via a formal training algorithm. A speech 

pattern representation can be in the form of a speech template or a statistical model and 

can be applied to a sound smaller than a word, a word, or a phrase. The pattern-matching 
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approach has become the predominant method for speech recognition in the last six 

decades (Karpagavalli & Chandra, 2016). 

In ASR, there have been used both temporal pattern matching approaches, such as dynamic 

time warping (DTW) and Vector Quantization (VQ) and stochastic pattern matching 

approaches, employing hidden Markov models (HMMs) or Gaussian mixture models (GMM). 

Dynamic Time Warping (DTW) is based on the observation that, in speech, the utterances7 

of the same word will have different durations. To obtain a global distance between two 

speech patterns a time alignment should be performed. In DTW the entire problem is 

divided into a small number of steps each requiring a decision to be made based on the local 

distance measures (Amin & Mahmood , 2008). The overall decision is made depending on 

these smaller decisions. To improve the accuracy of DTW a large number of templates per 

word is required. However, the disadvantage of using multiple templates per word is that 

the computational time for the calculation of DTW paths for each template increases. Thus, 

there exists trade-off between the recognition accuracy and the computational efficiency.  

For example, a recent study (Zaharia, Segarceanu, & Cotescu, 2010) combinedDTW and 

Vector Quantization(which is described in the next paragraph), by using only one reference 

template for each class in the vector quantization method, instead of storing multiple 

reference templates. This reference template is called ‘centroid’. In the recognition phase, 

the unknown utterances are compared to the centroids. The performance of the system is 

evaluated on digits (0-9) in Romanian language and it is found that this technique increases 

the recognition speed while reducing storage space. In (Abdulla, Chow, & Sin, 2003) a 

technique called ‘crosswords reference templates’ (CWRT) is used to generate the reliable 

templates to improve the recognition accuracy. The templates are generated from a set of 

examples rather than a single example. The system is speaker dependent and is tested for 10 

English digits. It is seen that the recognition accuracyis improved from 85.3% to 99% 

(Abdulla, Chow, & Sin, 2003). 

Vector Quantization (VQ) is an efficient data compression technique, used in various 

applications such as VQ-based encoding and VQ-based recognition. A vector quantizer is a 

system for mapping a sequence of continuous or discrete vectors into a digital sequence 

suitable for communication over or storage in a digital channel. The goal of such a system is 

data compression: to reduce the bit rate so as to minimize communication channel capacity 

or digital storage memory requirements while maintaining the necessary fidelity of the data. 

                                                      

7 Chunks of speech between pauses, containingwords and other non-linguistic sounds, which are called fillers 

(breath, um, uh, cough). 
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In (Furui, 1991) VQ is used along with DTW/HMM. The experiments were performed on 

isolated utterances of 10 digits and it was found that the computation time and storage 

required was reduced. In (Zulfiqar, Muhammad , & Enriquez, 2009) a Vector Quantization 

technique is implemented through Linde–Buzo–Gray algorithm. Results show that Mel-

frequency cepstrum coefficients (MFCC) based Speaker Identification system with VQ 

modeling technique has very good identification accuracy and therefore, it is robust against 

noise. It is seen that sampling frequency of speech and number of vectors in VQ codebook 

influences the identification accuracy greatly. The experiments were performed on a 

database having 600 voices of 30 males and 14 females.  

Hidden Markov models (HMMs) are used in speech recognition because a speech signal can 

be viewed as a piecewise stationary signal or a short-time stationary signal. In a short time-

scale, speech can be approximated as a stationary process. Speech can be thought of as a 

Markov model for many stochastic purposes. HMMs are usually used in state of the art 

systems instead of DTW due to better generalization properties and lower memory 

requirements. HMMs provide a simple and effective framework for modelling time-varying 

spectral vector sequences. As a consequence, almost all present day large vocabulary 

continuous speech recognition systems are based on HMMs.  

Automatic speech processing systems are employed more and more often in real 

environments. Thus, they are confronted with high noise levels and their performance 

degrades drastically. In (Lishuang & Zhiyan, 2010), a generic algorithm is used for training a 

Hidden Markov Model to improve speech recognition rate in noisy environmental 

conditions. Wavelet transform, MFCC and format frequencies are used for feature 

extraction. The experiment is performed on six different Chinese vowels at different SNR 

levels. The MFCC algorithm can be used along with the HMM but it cannot extract the 

features of speech signal at lower frequencies (Patel & Rao, 2010). When MFCC is used with 

frequency sub-band decomposition as feature extraction and HMM as recognizer gives 

better recognition results than compared to MFCC alone as feature extraction and HMM as 

recognizer (Patel & Rao, 2010). In (He, Deng, & Chou , 2006), the Minimum Classification 

Error (MCE) is used along with extended Baum Welch algorithm to optimize the HMM 

parameters. The MCE has faster convergence rate and is more stable than Generalized 

Probabilistic Descent (GPD). MCE algorithm is also well suited for large scale training. 

In Gaussian mixture models (GMMs) each speaker has an independent GMM model. In 

(Ting, Salleh, Tan, & Ariff, 2007), GMMs are used for text-independent speech recognition. 

The database consists of Malay clean sentence speech of 10 speakers consisting of 3 females 

and 7 males. The model training based on highest likelihood clustering is shown to 

outperform the conventional Expectation Maximization training and is more 

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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computationally efficient. In (Yantorno, Iyer, & Sha, 2004), GMM is used to distinguish 

between speech segments of different speakers in a multi-speaker environment.  

3.2.1.3 Artificial Intelligence Approach 

The Artificial Intelligence approach is a hybrid of the acoustic phonetic approach and pattern 

recognition approach. The main methodologies that made significant change in speech 

recognition area are described below.  

Multi layer perceptrons (MLP) are one of many different types of existing neural networks. The 

idea behind neural networks stems from studies of the structure and function of the human 

brain. Neural networks are useful to model the behaviour of real-world phenomena. 

Standard back-propagation algorithm is a gradient descent algorithm, in which the network 

weights are moved along the negative of the gradient of the performance function. 

However, the performance of the network degrades in noisy environments. By using MLP in 

log spectral domain minimizes the difference between noisy and clean speech 

(Ghaemmaghami, Razzazi, Sameti, Dabbaghchian, & BabaAli, 2009). In (Paliwal K.K., 1990), 

the performance of MLP is tested in noisy environment and is compared with other pattern 

classifiers such as Maximum Likelihood classifier and k-nearest neighbour. MLP outperforms 

the Maximum Likelihood classifier and k-nearest neighbour at different SNR environments.  

HMM-GMM combination is the most common generative learning approach in ASR. 

Conventional speech recognition systems utilize GMMs with HMM emmisions to represent 

the sequential structure of speech signals. Typically, each HMM state utilizes a mixture of 

Gaussian to model a spectral representation of the sound wave. The HMM state is typically 

associated with a sub-segment of a phone in speech (Anusuya & Katti, 2009), (Bilmes, 2006). 

State-of-the-art systems use hidden markov models to achieve good levels of performance. 

One of the reasons for the popularity of HMMs is that they readily handle the variable length 

data sequences which result from variations in word sequence, speaker rate and accent. 

Even though the HMM-GMM approach had become the standard tool in ASR, it has its own 

advantages as well as disadvantages. HMMs-based speech recognition systems can be 

trained automatically and are simple and computationally feasible to use. However, one of 

the main drawbacks of Gaussian mixture models is that they are statistically inefficient for 

modeling data that lie on or near a non-linear manifold in the data space. 

HMM-Neural Networks (Discriminative Learning). The paradigm of discriminative learning 

involves either using a discriminative model or applying discriminative training to a 

generative model. The use of neural networks in the form of Multilayer Perceptron (MLP) 

was popular in 1990’s. Due mainly to the difficulty in learning MLPs, this line of research has 

been switched to a new direction where the MLP simply produces a subset of feature 
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vectors in combination with the traditional features for use in the generative HMM 

([Morgan, et al., 2005). Neural networks, trained by back-propagation error derivatives, 

emerged as an attractive acoustic modeling approach for speech recognition in the late 

1980s. In contrast to HMMs, neural networks make no assumptions about feature statistical 

properties. 

Neural networks allow discriminative training in a natural and efficient manner, when used 

to estimate the probabilities of a speech feature segment. However, in spite of their 

effectiveness in classifying short-time units, such as individual phones and isolated words, 

neural networks are rarely successful in continuous recognition tasks (Smith & Gales, 2002), 

mainly because of their lack of ability to model temporal dependencies. These kind of 

shallow architectures have been proved effective in solving many simple or well-constrained 

problems, but their limited modeling and representational power can cause difficulties when 

dealing with more complicated real-world applications involving human speech. Thus, one 

alternative approach is to use neural networks as a pre-processing e.g. feature 

transformation, dimensionality reduction for the HMM based recognition. 

HMM-Deep Neural Networks. Deep learning sometimes referred as representation learning 

or unsupervised feature learning, is a new area of machine learning. Deep learning is 

becoming a mainstream technology for speech recognition and has successfully replaced 

Gaussian mixtures for speech recognition and feature coding at an increasingly larger scale. 

The first type of deep architectures consists of generative deep architectures, which are 

intended to characterize the high-order correlation properties of the data or joint statistical 

distributions of the visible data and their associated classes. Use of Bayes rule can turn this 

type of architecture into a discriminative one. Examples of this type are various forms of 

deep auto-encoders, deep Boltzmann machine, sum-product networks, the original form of 

Deep Belief Network (DBN) and its extension to the factored higher-order Boltzmann 

machine in its bottom layer. 

The second type of deep architectures are discriminative in nature, which are intended to 

provide discriminative power for pattern classification and to do so by characterizing the 

posterior distributions of class labels conditioned on the visible data. Examples include deep-

structured Conditional Random Fields, tandem-MLP architecture, deep convex or stacking 

network and its tensor version, and detection-based ASR architecture. 

In the third type, or hybrid deep architectures, the goal is the discrimination, but this is 

assisted with the outcomes of generative architectures. The generative component is mostly 

exploited to help the discrimination as the final goal of the hybrid architecture (Deng & Li, 

2013), ( Hinton, et al., 2012). 
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3.2.2   Speech Recognition Tools 

Researchers on automatic speech recognition have several potential choices of open-source 

toolkits for building a recognition system. Notable among these are: HTK8, Julius9 (both 

written in C), Sphinx410 (written in Java) of the Carnegie Mellon University and Kaldi11, a free, 

open-source toolkit for speech recognition research. Kaldi provides a speech recognition 

system based on finite-state transducers (using the freely available OpenFst), together with 

detailed documentation and scripts for building complete recognition systems (Povey & 

Ghoshal, 2011). 

Some other less popular open-source systems and kits are RWTH Aachen Automatic Speech 

Recognition System (RASR)12, Segmental Conditional Random Field Toolkit for Speech 

Recognition (SCARF)13, Improved ATROS (iATROS)14, SRI International’s Decipher15, idiap’s 

Juicer and SHoUT speech recognition toolkit16. 

3.2.3   Measures of Performance 

The performance of speech recognition systems is usually specified in terms of accuracy and 

speed. Accuracy may be measured in terms of performance accuracy which is usually rated 

with word error rate (WER), whereas speed is measured with the real time factor. Other 

measures of accuracy include Single Word Error Rate (SWER) and Command Success Rate 

(CSR). The performance of the speech recognizer is measured in terms of Word Error Rate 

(WER) and Word Recognition Rate (WRR) (Karpagavalli & Chandra, 2016). Word errors are 

categorized into number of insertions, substitutions and deletions. Consequently, Word 

Error Rate is defined as follows: 

𝑊𝐸𝑅 =  
Insertions + Substitutions + Deletions

No. of Reference Words
 

whereas Word Recognition Rate is defined as  

𝑊𝑅𝑅 = 1 − 𝑊𝐸𝑅 

 

                                                      

8 http://htk.eng.cam.ac.uk/ 
9 http://julius.osdn.jp/en_index.php 
10 https://github.com/cmusphinx/sphinx4 
11 https://github.com/kaldi-asr/kaldi 
12 https://www-i6.informatik.rwth-aachen.de/rwth-asr/ 
13 https://www.microsoft.com/en-us/research/publication/scarf-a-segmental-conditional-random-field-toolkit-
for-speech-recognition-2/ 
14 https://www.prhlt.upv.es/wp/resource/iatros-improved-atros 
15 http://www.speech.sri.com/projects/decipher/ 
16 http://shout-toolkit.sourceforge.net/ 

https://www-i6.informatik.rwth-aachen.de/rwth-asr/
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3.3  Semantic text analysis 

Knowledge extraction from text, as means for populating Semantic Web knowledge bases 

towards the semantic integration and reasoning over the distilled semantic information, is a 

very challenging, interdisciplinary task that has attracted increasing interest over the past 

few years. Relevant approaches build on NLP pipelines for performing typical information 

extraction tasks, such as Named Entity recognition and classification, entity linking (EL), word 

sense disambiguation (WSD), and semantic parsing (i.e., the identification of semantic 

predicates, their arguments and their semantic roles). The outputs of the NLP tasks are then 

aggregated and refactored into a Semantic Web compliant representation commonly 

referred to as a knowledge graph. 

 

In LODifier (Augenstein, Pado, & Rudolph, 2012), for example, Discourse Representation 

Structures (Kamp & Reyle, 1993) (DRSs), extracted by means of deep semantic parsing, are 

converted to RDF graphs using transformation rules that map the unary and binary DRS 

conditions to respective class and property assertions, while RDF reification is used for 

logical and modal descriptions, such as disjunction and possibility. Adopting a more 

knowledge-oriented paradigm, PIKES (Corcoglioniti, Rospocher, & Aprosio, 2016)  extracts 

entities and complex relations between them, using deep semantic parsing and linguistic 

frames, and subsequently converts them into respective OWL graphs. The translation 

follows a neo-Davidsonian representation style, where frames are represented as reified 

objects, connected to each of their participants by means of properties that reflect the 

semantic roles of the participants, using, among others, the VerbNet and FrameNet semantic 

role repositories. SPARQL-like rules are used to refactor the linguistically grounded 

representations (so called “mention layer") to respective knowledge assertions (“instance 

layer"), while post-processing is applied to materialise implicit knowledge and compact 

redundant structures.  

 

 
Figure 2: Visual rendering of the knowledge graph produced by PIKES for the input "The sewers in 

Aristotelous square are flooded." 

 
FRED (Gangemi, Presutti, Recupero, Nuzzolese, & Mongiovì, 2017) combines Discourse 

Representation Theory, linguistic frames, and ontology design patterns (Gangemi & Presutti, 
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Ontology Design Patterns, 2009), to produce RDF/OWL ontologies and linked data from text. 

Deep semantic parsing is used to capture entities and the relations between them as DRS 

structures. Semantic role labelling is performed using VerbNet and FrameNet roles. What 

distinguishes FRED from other approaches and renders it as the work that is most relevant 

to our pursuits, is that it maximises modelling choices in accordance to Semantic Web 

principles and grounds the transformation and reengineering of DRS structures to RDF/OWL 

graphs on the event and situation semantics as defined in DOLCE+DnS Ultra Lite17 (DUL), 

modelling semantic roles as object properties. 

 

 
 

Figure 3: Visual rendering of the knowledge graph produced by FRED for the input "The sewers in 
Aristotelous square are flooded." 

 

Question-answering, semantic search, summarization and semantic sentiment analysis, are 

only but a few examples of applications that benefit from the formalization of textual inputs 

semantics that such knowledge graphs afford. Event-centric graphs that capture the 

dynamics of the ever-increasing streams of information, as encountered in e.g., news wires, 

are gaining increasing popularity. In (Rospocher, et al., 2016), for example, a model for 

event-centric knowledge graphs is presented along with a method for large-scale extraction 

from news articles, while,  following a different paradigm, RDF2VEC graph embeddings are 

used along with the subsumption hierarchy of semantic roles are used for reconciling 

knowledge graphs and enabling their merging based on the underlying events in (Alam, 

Recupero, Mongiovì, Gangemi, & Ristoski, 2017). As described in the following, social media 

is another application domain where event-extraction has received increasing interest and is 

being been extensively researched. 

                                                      

17 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl# 
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3.3.1   Semantic social media analysis for crisis management 

Social media services have been increasingly acknowledged and adopted as valuable 

communication channels during crisis situations, ranging from natural disasters, to protests 

and terrorist attacks (Hughes & Leysia, 2009), (Vieweg, Hughes, Starbird, & Palen, 2010). 

Besides excellent information propagation channels for authorities and emergency agencies 

to post alerts and advices to the public, social media posts, affording near real-time 

streaming of information about what people experience and/or learn from others, have 

been shown to contribute to enhanced situational awareness and provide support for 

decision making tasks. As a result, over the last decade a research into social media analysis 

has received considerable attention, spanning a multitude of pertinent challenging tasks, 

from data acquisition, filtering, topic and trend detection and tracking, clustering and 

classification (e.g., with respect to information source, thematic content categories, etc.), to 

the extraction of granular information from the post contents and their geotagging; for a 

comprehensive survey, the reader is referred to the literature reviews of (Imran, Castillo, 

Diaz, & Vieweg, 2015) and (Farzindar, 2015). As within the beAWARE system, text analysis is 

invoked once potentially relevant to the unfolding emergency social media posts have been 

identified, for the remaining, we focus on the last two of the aforementioned tasks, namely 

geotagging and semantic information extraction.  

 
Geotagging 
Social media geotagging, i.e., attaching geo-coordinates to posts, is a typical requirement in 

emergency management contexts (Graham, Hale, & Gaffney, 2014), (Ikawa, Enoki, & 

Tatsubori, 2012), (Lingad, Karimi, & Yin, 2013), enabling, among others, location-based 

information retrieval, clustering and aggregation, as well as the visualization of the reported 

information on a map. The availability of machine-readable location information in social 

media messages, in the form of metadata, depends on the user’s device having the capacity 

to know its location, on the specific client software having the capability to read this from 

the device, and most importantly, on the user enabling this feature explicitly. Although, in 

the majority of crisis-related messages, location metadata are absent (Burton, Tanner, 

Giraud-Carrier, West, & Barnes, 2012), many social media posts contain references to place 

names inline their contents (e.g. “The traffic lights in Tsimiski are out.” where Tsimiski is a 

street in the center of Thessaloniki). Geotagging addresses the identification of place names 

in the text messages and their linking them to respective coordinates. This is typically 

accomplished using Named Entity Recognition tools to extract potential place mentions 

candidates, followed by a disambiguation and linking step against a reference geographical 

knowledge base. Gazetteer-based search and n-gram matching, pattern-matching and 

regular expressions, as well as supervised and semi-supervised approaches have been 

heavily researched for NER purposes (Nadeau & Sekine, 2009), while examples of prominent 
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publicly available off-the-shelf tools include, among others, Stanford NER18, 

OpenNLP19, LingPipe20, etc.  

 

Typical NER tools however, fall short when considering “non-traditional” NER locations, such 

as local streets and buildings, or when dealing with non-standard place name abbreviations 

and slang or misspelled references, frequently encountered in Twitter posts (MacEachren, et 

al., 2011), (Gelernter & Mushegian, 2011). While tweet-specific NER and linking tools have 

been investigated towards ameliorating the particularities of such inputs, even in very recent 

approaches (Inkpen, Liu, Farzindar, Kazemi, & Ghazi, 2017), the targeted scope tends to still 

remain within the typical NER location categories, e.g. countries, states, provinces, etc., and 

consider mainly English contents, which have a considerably higher coverage in relevant 

resources such as DBpedia and GeoNames. In an attempt towards a more comprehensive, 

and fine-grained, location extraction from Twitter text, a collocation-driven language model 

is developed from region-specific gazetteers for extracting and identifying location mentions 

(Al-Olimat, Thirunarayan, Shalin, & Sheth, 2017); the use of OpenStreeMap as one of the 

reference geographical information gazetteers, but as the evaluation considers English 

tweets only, it is fairly hard to assess its portability to other languages and the workload of 

required adaptations. 

 
Semantic information extraction 
Semantic information extraction from social media posts involves typical NLP tasks, including 

tokenization, lemmatization, part-of-speech tagging (POS), named entity recognition and 

entity linking, semantic role labeling and dependency parsing, only now, there is an explicit 

focus on the extraction of structured representations from tweet texts that are additionally 

semantically enriched via means of linking against semantic knowledge bases (i.e. 

knowledge sources of structure information with well-defined, formal semantics).  

 

Prominent approaches in entity recognition and disambiguation by means of linking against 

Linked Data knowledge bases (DBpedia, YAGO, BabelNet, FreeBase, etc.) include among 

others, Agdistis (Usbeck, et al., 2014), DBpediaSpotlight (Daiber, Jakob, Hokamp, & Mendes, 

2013) and Babelfy (Navigli, Camacho-Collados, & Raganato, 2017). Entities semantics are 

identified via de-referenceable Uniform Resource Identifiers (URIs) and Internationalized 

Resource Identifies (IRIs), such as, http://dbpedia.org/resource/Rome and 

http://it.dbpedia.org/resource/Roma. Social media-specific entity recognition and linking 

tools have been investigated, including among others the works by Ritter (Ritter, Clark, 

                                                      

18 https://nlp.stanford.edu/ner/ 
19 https://opennlp.apache.org/ 
20 http://alias-i.com/lingpipe/ 

http://dbpedia.org/resource/Rome
http://it.dbpedia.org/resource/Roma
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Mausam, & Etzioni, 2011), Bontcheva (Bontcheva, et al., 2013), Li (Li, et al., 2012) (TwiNER) 

and Al-Olimat (Al-Olimat, Thirunarayan, Shalin, & Sheth, 2017). However, entity recognition 

and linking are not the only NLP tasks for which social media-specific techniques and 

adaptations have been investigated. The particularities pertinent to tweets have spurred 

research into other NLP tasks, including POS-tagging (Owoputi, et al., 2013), (Derczynski, 

Ritter, Clark, & Bontcheva, 2013), as well as dependency parsing (Kong, et al., 2014), (Liu, et 

al., 2018) and treebanks for training. Examples of the latter include, among others, Foster et 

al. (Foster, et al., 2011), who annotated 7,630 tokens’ worth of tweets according to the Penn 

Treebank (PTB) phrase-structure conventions, enabling conversion to Stanford 

Dependencies, and TWEEBANK (Kong, et al., 2014), the tweet Treebank developed by Kong 

et al. that consists of 12,149 tokens and also draws upon PTB. 

 

Last but not least, examples of semantic social media-specific analysis systems in the domain 

of emergency management include the following: Twitcident (Abel, Hauff, Houben, 

Stronkman, & Tao, 2012), a system that supports semantic filtering, faceted search and 

summarization of tweets; Twitris (Purohit & Sheth, 2013) that addresses the capturing of 

event-related information and its semantic analysis and integration along spatio-temporal-

thematic aspects, sentiment and subjectivity, as well as community evolution aspects; 

ArmaTweet (Tonon, Cudré-Mauroux, Blarer, Lenders, & Motik, 2017) that addresses the 

extraction of semantic events from tweets and their capturing as structured RDF knowledge 

graphs.  

 

Despite the availability of tweet specific NLP tools and resources, their sparseness, 

compared to those for regular written language, and limited coverage across different 

languages and application domains, still favor the use of non-social media-specific tools and 

methodologies, especially for core tasks such as parsing, in synergy with normalization steps 

that precede their application. Having gone over representative approaches and tools for 

entity recognition and linking tasks, and locations in particular, in the remaining of the 

Section, we focus on resources, namely training corpora and lexicons, used for parsing, as to 

understand textual semantics, the relations between the words need to be established. 

3.3.2   Parsing resources 

The following tables compile the state of the art resources in semantic text analysis for the 

four targeted languages: Italian, Greek, Spanish and English. Given that UPF has previous 

experience working on English and Spanish corpora and lexicons, most of the following listed 

resources concern Italian and Greek. 

Corpora of annotated sentences are needed in order to train statistical analyzers (e.g., part-

of-speech taggers, lemmatizers, or syntactic parsers). For all languages, UPF will develop 
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Universal Dependency-based tools (see Section 6). However, in case these representations 

do not allow us to produce fully adequate semantic representations, UPF will resort to 

alternative resources, as compiled during the first half of the project (UD and best 

alternative are marked in green in the tables).  

Table 6 describes the main characteristics of Italian corpora. With its several annotated 

layers, the ISST corpus is the best candidate to replace the UD corpus we use so far. 

Table 6: Italian corpora 

ITALIAN CORPORA 

Name Short description format size license 

TUT 

 

 

TUT21 (Bosco et al., 2000) 
is a morpho-syntactically 
annotated collection of 
Italian sentences, which 
includes texts from 
different text genres and 
domains (newspapers, 
civil code, Acquis, 
Wikipedia, Italian 
constitution), released 
in several annotation 
formats. 

TUT-native 
dependencies 

TUT-PENN 
constituent 

TUT-CCG 

CoNLL format 

Stanford 
Dependencies 

3452 sentences, 

102.000 tokens,  

in 6 sections 

 

Available for download 
from the web: 

http://www.di.unito.it/
~tutreeb/treebanks.htm
l 

 

IIST 

 

IIST-
CoNLL22 

 

IIST-
TANL 

ISST (Montemagni et al., 
2003) has a five-level 
structure covering 
orthographic, morpho-
syntactic, syntactic and 
semantic levels of 
linguistic description. 
Syntactic annotation is 
distributed over two 
different levels: the 
constituent structure 
level and the 
dependency annotation 
level. The fifth level deals 
with lexico-semantic 
annotation. 

None of the ISST 
syntactic annotation 
levels presupposes the 
other. 

ISST has evolved into 

PENN-
constituents 

FAME 
functional 
annotation  

ISST semantic 
tags  

IWN senses 

CoNNL format 
(for ISST-
CoNNL) 

 

Frame 
information 
(from 
FrameNet) for 

1. a "balanced" corpus, 
testifying general 
language usage, for a 
total of 215,606 
tokens; 

2. a specialised corpus, 
amounting to 89,941 
tokens, with texts 
belonging to the 
financial domain. 

 

 

                                                      

21 http://www.di.unito.it/~tutreeb/ 
22 http://medialab.di.unipi.it/isst/ISST-CoNLL.pdf 

http://www.di.unito.it/~tutreeb/treebanks.html
http://www.di.unito.it/~tutreeb/treebanks.html
http://www.di.unito.it/~tutreeb/treebanks.html
http://www.di.unito.it/~tutreeb/
http://medialab.di.unipi.it/isst/ISST-CoNLL.pdf
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ISST-CoNNL and ISST-
TANL 

ISST-TANL 
(Lenci, 
Montemagni, 
Venturi, & 
Cutrulla, 
2012) 

PAISÀ 

PAISA is a (Lyding, V. et 
al., 2014) large collection 
of Italian texts annotated 
with morpho-syntactic 
tags and dependency23 
relations (also used for 
the annotation of the 
ISST-TANL dependency 
annotated corpus.) 

The 
annotated 
corpus 
adheres to 
the standard 
CoNLL 
column-based 
format 
(Buchholz & 
Marsi, 2006) 
(Buchholz and 
Marsi, 2006), 
is encoded in 
UTF-8. 

The corpus contains 
approximately 380,000 
documents coming 
from 1,067 different 
websites, for a total of 
about 250 million 
words. 

All documents 
contained in the PAISA` 
corpus date back to 
Sept./Oct. 2010. The 
documents come from 
several web sources. 

 

Creative 
Commons Attribution-
Noncommercial-
ShareAlike license. 

Available for download 
and it can be queried 
via its online interface: 
http://www.corpusitali
ano.it/en/access/adva
nced_interface.php 

For corpus download, 
both the raw text 
version and the 
annotated corpus in 
CoNLL format are 
provided. 

UD-
Italian-
ISDT24 

The Italian corpus 
annotated according to 
the UD annotation 
scheme was obtained by 
conversion from ISDT 
(Italian Stanford 
Dependency Treebank), 
released for the 
dependency parsing 
shared task of Evalita-
2014  

CoNLL-X 

uses 17 UPOS 
tags  

14,167 sentences, 
278,429 tokens and 
298,344 syntactic words. 

License: CC BY-NC-SA 3.0 

 

Table 7 describes the main characteristics of Greek corpora. Only the GDT is annotated with 

syntactic and semantic dependencies, and is then our main contingency corpus in Greek. 

Table 7: Greek corpora 

GREEK CORPORA 

Name Short description format size license 

GDT- 
Greek 
Dependen
cy 

GDT (Prokopidis et al., 
2005) is a reference 
corpus for Modern 
Greek, annotated at 
multiple levels: 

Dependency-
based 
annotation 
scheme 

175.000 tokens 

7000 sentences 

 

 

 

                                                      

23 http://universaldependencies.org/treebanks/it_isdt/index.html 
24 http://universaldependencies.org/treebanks/it_isdt/index.html 

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.corpusitaliano.it/en/access/advanced_interface.php
http://www.corpusitaliano.it/en/access/advanced_interface.php
http://www.corpusitaliano.it/en/access/advanced_interface.php
http://universaldependencies.org/treebanks/it_isdt/index.html
http://universaldependencies.org/treebanks/it_isdt/index.html
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Treebank 

 

Morphological, syntactic 
and semantic. 

The texts include: 
manually normalized 
transcripts of European 
parliamentary sessions, 
articles from the Greek 
Wikipedia and 
web documents 
pertaining the politics, 
health, and travel 
domains. 

UD_Greek
-GDT 

The Greek UD treebank 
(Prokopidis & 
Papageorgiou, 2017) is 
derived from the Greek 
Dependency Treebank 
(http://gdt.ilsp.gr), a 
resource developed and 
maintained by 
researchers at the 
Institute for Language 
and Speech 
Processing/Athena R.C.25 

CoNLL-X 61,673 tokens 

2,521 sentences 

 

Creative Commons 
Attribution-
NonCommercial-
ShareAlike, CC BY-NC-SA 
3.0. 

HNC 
Hellenic 
National 
Corpus 

HNC (Hatzigeorgiu, N. et 
al., 2000) is a corpus of 
written texts from 
several media (books, 
periodicals, newspapers 
etc.), which belong to 
different genres (articles, 
essays, literary works, 
reports, biographies etc.) 
and various topics 
(economy, medicine, 
leisure, art, human 
sciences etc.). 

PAROLE 
format 

34 million words available over the 
Internet, for research 
use only 

CGT 

Corpus of 
Greek 
Texts 

 

CGT (Goutsos, 2010) is a 
corpus of texts from 
radio, television, live, 
book, telephone, 
newspaper, magazine, 
electronic, other 

Mixed corpus, including 
both spoken and written 
material 

 

30 million words available and freely 
accessible online 

 

                                                      

25 http://www.ilsp.gr 

http://el.wikipedia.org/
http://el.wikipedia.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
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Table 8 describes the main characteristics of Spanish corpora. As part of beAWARE, UPF 

develops the AnCora-UPF corpus, which should reach over 10,000 sentences by the end of 

the project. AnCora-UPF is naturally an annotation which will be used for the beAWARE 

experiments. 

Table 8: Spanish corpora 

SPANISH CORPORA 

Name Short description format size license 

AnCora Ancora (Taulé, Martí, & 
Recasens, 2008)Consists 
mainly of newspaper 
texts annotated at 
different levels of 
linguistic description: 
morphological (PoS and 
lemmas), syntactic 
(constituents and 
functions), and semantic 
(argument structures, 
thematic roles, semantic 
verb classes, named 
entities, and WordNet 
nominal senses). All 
resulting layers are 
independent of each 
other. 

CoNLL 17,680 sentences 

~500,000 words 

freely available from the 
Web: 

http://clic.ub.edu/corp
us/es/ancora 

 

IULA 
Spanish 
Treebank 

IULA Spanish Treebank 
(Marimon & Bel, 2015) is 
a technical corpus of 
Spanish annotated at 
surface syntactic level, 
following the 
dependency grammar 
theory 

Dependency 
format 

over 40,000 sentences publicly and freely 
available from the 
META-SHARE platform5 
with a Creative 
Commons Attribution 
3.0 Unported License 

AnCora-
UPF 

Following Meaning-Text 
Theory, MTT (Mel’čuk, 
1988), the Ancora-UPF 
treebank (Mille & 
Wanner, 2010) proposes 
a hierarchical annotation 
schema that 
accommodates for both 
fine-grained language-
specific dependency 
structures and a generic 
picture of abstract 
dependency relations. 

CoNLL 3,513 sentences 

~100,000 tokens 

freely available from the 
Web: 

http://clic.ub.edu/corp
us/es/ancora 

http://clic.ub.edu/corpus/es/ancora
http://clic.ub.edu/corpus/es/ancora
http://clic.ub.edu/corpus/es/ancora
http://clic.ub.edu/corpus/es/ancora
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UD-
Spanish 
Ancora26 

The UD-Spanish Ancora 
(Martínez Alonso & 
Zeman, 2016) was 
automatically converted 
from AnCora into UD. 

CoNLL-X  

uses 17 UPOS 
tags 

17,680 sentences, 
547,681 tokens and 
549,570 syntactic words. 

GNU GPL 3.0 

 

UD-
Spanish -
GSD27 

Automatically converted CoNLL-X  

uses 16 UPOS 
tags 

16,013 sentences, 
423,346 tokens and 
431,587 syntactic words. 

CC BY-NC-SA 3.0 US 

 

Finally, Table 9 displays the main features of the two reference English corpora we will use: 

Table 9: English Corpora 

ENGLISH CORPORA 

Name Short description format size license 

PennTree
bank 

The PennTreebank 
(Johansson & Nugues, 
2007) is a dependency 
conversion of a 
constituency treebank, 
mainly containing Wall 
Street Journal articles 

CoNLL ~40,000 sentences 

~1,000,000 tokens 

LDC 

UD  UD (Nivre,J., et al. , 2016) 
is a manually revised 
version of open textual 
material from electronic 
journal articles, blogs, 
etc. 

CoNLL-X 

~16,000 sentences 

~150,000 tokens 

GNU GPL 3.0 

 

Good quality lexical resources are needed in order to obtain reliable semantic structures. 

We aim at identifying descriptions of lexical units that include their government patterns (or 

subcategorization frames), that is, how many participants does one unit usually have and 

how they combine with each other. There is a great variety of lexical resources for a great 

variety of purposes. We focus on the resources that can be used for language analysis, but 

also in the context of language generation. Lexicons with more generic semantic information 

can be very useful, and those that include mappings to standard resources (such as 

BabelNet, PropBank, or VerbNet for instance) are preferred.  

In the following, lexical resources relevant to our purposes are outlined. More specifically, 

Table 10 summarizes the main characteristics of 2 Italian lexicons; Table 11 describes the 

                                                      

26http://universaldependencies.org/treebanks/es_ancora/index.html 
27http://universaldependencies.org/treebanks/es_gsd/index.html  

http://universaldependencies.org/treebanks/es_ancora/index.html
http://universaldependencies.org/treebanks/es_gsd/index.html
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main characteristics of Greek lexicons; Table 12 describes the main characteristics of Spanish 

lexicons; and Table 13, the main characteristics of English lexicons. 

 
Table 10: Italian lexicons 

ITALIAN LEXICONS 

Name Short description format size license 

PAROLE-
SIMPLE-CLIPS 

PAROLE-SIMPLE-CLIPS (Ruimy & 
al., 2002)  is a multilayered 
lexicon (4 layers) Provides 
interconnected syntactic and 
semantic information. Includes 
argument structure. 

Based on the 
PAROLE-SIMPLE 
model.  

~55,000 lemmas Non-Commercial 
Use - ELRA END 
USER 

RDF-converted 
PAROLE SIMPLE 

CLIPS 

RDF-converted PAROLE SIMPLE 
CLIPS (Del Gratta, 2015)  is a 
conversion of PSC into RDF. 
Linking to the semantic web 
and Linked Data cloud. Follows 
the qualia structure of the 
generative lexicon theory and 
the lemon view of lexical sense 
as a reified pairing of a lexical 
item and a concept in an 
ontology. 

RDF  Open Data 
Commons 
Attribution 
License 

 
Table 11: Greek lexicons 

GREEK LEXICONS 

Name Short description format size license 

LEXIS28 

GDT-LEXIS 

LEXIS-
EmotionVerbs 

A Greek Computational 
Lexicon of general language 
based on corpora, language 
with morphological, syntactic 
and semantic information. 
GDT-LEXIS (Papageorgiou & al., 
2006) s a lexical resource with 
semantic information for verbal 
predicates. 
LEXIS-Emotion Verbs (Giouli & 
Fotopoulou, 2012)  details the 
argument structure, 
distributional properties and 
possible transformations of 
greek emotion verbs. 

  

Comprises 
~60,000 entries 
with 
morphological 
information, of 
which a subset 
of 30,000 
entries also 
have syntactic 
information 
and a further 
subset of 
15,000 with 
semantic 
information. 

In GDT-LEXIS: 
about 800 
verbs 

 

                                                      

28 http://www.ilsp.gr/en/infoprojects/meta?view=project&task=show&id=140 

http://www.ilsp.gr/en/infoprojects/meta?view=project&task=show&id=140
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SKEL 

SKEL (Petasis & al., 2001) is a 
morphological lexicon that was 
used to develop a lemmatizer 
and a morphological analyser 
that were included in a 
controlled language checker for 
Greek. 

 

~60.000   
lemmas   that    
correspond to 
~710.000 
different word 
forms. 

 

Conceptual 
Lexicon 

ConceptualLexicon (Fotopoulou 
& al., 2014) encodes morpho-
syntactic and semantic 
properties of nominal and 
verbal MWEs. 

 

~1000 entries  

EKFRASI 

EKFRASI (Tzortzi & 
Markantonatou, 2014) is a 
conceptually organised lexicon 
encoded with Protégé, Includes 
conceptual and lexical relations 
as well as their morpho-
syntactic properties 

 

  

 

 
Table 12: Spanish lexicons  

SPANISH LEXICONS 

Name Short description format size license 

AnCora_Verb_E
S 

AnCora_Verb_ES (Aparicio, 
Taulé, & Martí, 2008) provides 
semantic info, 
subcategorization, Argumental 
patterns and thematic roles. 
Pbank id, Verbnet Id, Framenet 
id, Wordnet id 

XML 

2,820 verbs Freely available 

AnCora_Nom_E
S 

AnCora_Nom_ES (Peris & Taulé, 
2011) covers deverbal nouns: 
Denotative type, Wordnet 
synset, argumental pattern and 
thematic roles. Link to verb. 

XML 

1,658 lemmas Freely available 

AnCora-Net 

AnCora-Net (Taulé & al., 2011)  
contains the AnCora-
Verb lexical entries linked to 
different English knowledge 
source: VerbNet, PropBank, 
 FrameNet, WordNet 3.0  and 
OntoNotes. 

XML 

 Freely available 

ADESSE 

ADESSE (García-Miguel & al., 
2010) covers subcategorization 
frames, diathesis alternations 
and syntactic semantic 
schemes. 

 

~4,000 verbs  

http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://verbs.colorado.edu/~mpalmer/projects/ace.html
http://framenet.icsi.berkeley.edu/
http://wordnet.princeton.edu/
http://verbs.colorado.edu/VSAP/
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GLiCOm29 

Computational lexicon of 
inflected wordforms in Spanish. 
The lexicon is distributed in two 
sublexicons: 1. word forms 2. 
verb-clitic combinations 

 

1,152,242 word 
forms and 

4,283,637       
verb-clitic 
combinations 

Freely available 

 

Table 13: English lexicons 

ENGLISH LEXICONS 

Name Short description format size license 

PropBank & 
NomBank 

PropBank (Kingsbury & Palmer, 
2002) and NonBank (Meyers, 
MacLeod, Szekely, Zelinska, & 
Young, 2004) cover 
subcategorization frames for 
verbs and nouns respectively, 
and correspondences between 
syntactic and semantic roles 

XML 

11,781 
disambiguated 

lemmas 

CC BY-SA 4.0 

VerbNet 

VerbNet (Schuler, 2005) 
provides a classification of 
verbs into 270 semantic classes; 
Subcategorization frames, 
diathesis alternations and 
syntactic semantic schemes. 

XML 

2,380 
disambiguated 

verbs 

CC BY-SA 4.0 

 

Table 14 gives details about BabelNet. 

Table 14: Multilingual lexicons 

MULTILINGUAL LEXICON 

Name Short description format size license 

BabelNet 

BabelNet (Navigli & Ponzetto, 
BabelNet: Building a very large 
multilingual semantic network, 
2010) is a multi-lingual 
semantic network with fine-
grained senses, definitions and 
mappings to VerbNet among 
others 

RDF / HTTP API 

284 languages 

~6,000,000 
concepts 

10,000,000 
named entities 

CC BY-NC-ND 4.0 

 

A very large amount of NLP tools has been developed in the recent years; most tools are 

language-agnostic and simply need to be trained on the resources of a desired language. 

One of the most widely used toolkit is Stanford CoreNLP (Manning, Surdeanu, & Baue, 

                                                      

29 https://www.upf.edu/documents/107805982/109136461/tec0128_glicom_tbadia.pdf/07632628-f275-
425e-b59c-417433c6a327 

https://www.upf.edu/documents/107805982/109136461/tec0128_glicom_tbadia.pdf/07632628-f275-425e-b59c-417433c6a327
https://www.upf.edu/documents/107805982/109136461/tec0128_glicom_tbadia.pdf/07632628-f275-425e-b59c-417433c6a327
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2014), which contains all the basic components needed in an NLP analysis pipeline: sentence 

splitting, tokenization, lemmatization, morphological tagging, coreference resolution, 

dependency parsing. Another popular toolkit is MATE Tools (Bohnet & Nivre, 2012), 

developed at the University of Stuttgart. As described in Section 6, we currently use 

components of these two off-the-shelf toolkits, which we trained for our purposes. For 

dependency parsing, we use a different tool, namely the MST parser, which (McDonald, 

Lerman, & Pereira, 2006) has the advantage of having low memory requirements at 

execution time compared to other parsers, with a competitive accuracy.  

UPF has recently been working on English and Spanish, but has little experience with Italian 

or Greek. Table 15 and Table 16 outline some alternative NLP tools for the latter two 

languages. 

Table 15: NLP tools for Italian 

ITALIAN NLP TOOLS 

Name Short description 

TULE 

A linguistic framework including a Morphological analyzer, a Tokenizer and a Chunk-rule 

based dependency Parser in Allegro Common Lisp. Supports two 

languages: Italian and English. 

TULE adopts a representation format based on the dependency paradigm centred 

upon Augmented Relational Structure (ARS), where each relation is implemented as a 

feature structure that can include values for morpho-syntactic, functional-syntactic, and 

syntactic-semantic components. 

 

http://www.tule.di.unito.it/index.html 

 

LINGUA 

Includes: sentence-splitter, tokenizer, pos-tagging, lemmatization and dependency parser. 

http://linguistic-annotation-tool.italianlp.it/ 

 

TINT 

TINT (Palmero & Moretti, 2016) is a Java-based pipeline for Natural Language Processing 

(NLP) in Italian, based on Stanford CoreNLP.  Includes: tokenization, sentence splitting, 

morphological analysis, lemmatization and modules for part-of-speech tagging, dependency 

parsing and named entity recognition. 

http://tint.fbk.eu/index.html 

 

TANL 

Text Analytics and Natural Language software including: sentence-splitter, tokenizer, pos-

tagger, lemmatizer, morph-tagger, NE-tagger, anaphora resolution, super-sense tagger and 

parser 

http://medialab.di.unipi.it/wiki/Tanl 

 

http://en.wikipedia.org/wiki/Allegro_Common_Lisp
http://www.tule.di.unito.it/index.html
http://linguistic-annotation-tool.italianlp.it/
http://tint.fbk.eu/index.html
http://medialab.di.unipi.it/wiki/Tanl
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Table 16: NLP tools for Greek 

GREEK NLP TOOLS 

Name Short description 

ILSP 

Natural Language Processing services developed by the NLP group of the Institute for 
Language and Speech Processing: chunker, dependency parser, FBT pos-tagger, lemmatizer, 
named-entity recognizer, sentence splitter and tokenizer, transliterator and Wikipedia 
multilingual domain-related terma and URL lists extractor 

http://nlp.ilsp.gr/ws/ 

AUEB 

NLP software developed by the Natural Language Processing Research group in the 
Dept.Informatics of the Athens University: pos-tagger, named entity recognizer and 
NaturalOWL generator for Greek and English. 

http://nlp.cs.aueb.gr/software.html 

ELTL 
NLP tools: lemmatizer, pos-tagger, grammatical tagger, VerbTagGr and link to WordNet 

http://hermes.di.uoa.gr/glosseng.htm 

LEXISCOPE 

A compound language tool that provides information about a Modern Greek word or 
phrase, combining the functionality of Neurolingo's Hyphenator, Speller, Lemmatizer, 
Morphological Lexicon and Thesaurus. 

http://www.neurolingo.gr/en/online_tools/lexiscope.htm 

 

3.4  Summary  

Summarize, outlining approaches/results upon which the beAWARE analysis components 

build upon and respective limitations (that the beAWARE analysis approaches envisage to 

mitigate). 

 

 

 

http://www.ilsp.gr/
http://www.ilsp.gr/
http://nlp.ilsp.gr/ws/
http://nlp.cs.aueb.gr/software.html
http://hermes.di.uoa.gr/glosseng.htm
http://www.neurolingo.gr/en/technology/application_tools/hyphenator.jsp
http://www.neurolingo.gr/en/technology/application_tools/speller.jsp
http://www.neurolingo.gr/en/technology/application_tools/lemmatizer.jsp
http://www.neurolingo.gr/en/technology/lexica/morpholexicon.jsp
http://www.neurolingo.gr/en/technology/lexica/thesaurus.jsp
http://www.neurolingo.gr/en/online_tools/lexiscope.htm
http://www.neurolingo.gr/en/online_tools/lexiscope.htm
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4 Image and video analysis v1  

4.1  Fire and flood detection in social media images 

For the task related to the analysis of fire and flood images from social media the image 

analysis component includes several interoperable modularities deploying an array of 

cutting-edge computer vision techniques: 

a) Image classification so as to determine whether an image contains an emergent 

event or not (i.e. a fire of flood event), 

b) Emergency localization in order to detect the regions where fire and flood pixels 

exist in flood and fire pictures, 

c) Object Detection so as to find people and vehicles that exist in the image. 

Each one of them is assigned to process an image separately from the others in order to 

decide about the existence of fire and flood concepts and objects that are of particular 

interest like people and vehicles and later locate their position inside the image. Then, a 

severity level estimation module is assigned with the task of deciding about the danger that 

the people and vehicles undergo based on their proximity to the emergent event. The 

overall diagram is depicted in Figure 4:. 

 

Figure 4: Overall diagram of fire and flood social media images analysis 

4.1.1   Emergency Classification (EmC) 

The Emergency Classification component is based on State-of-the-Art image classification 

techniques and is used so as to determine which images contain an emergency event. 

Inspired from the recent success that deep learning showed in image understanding 

(Simonyan & Zisserman, 2014) and scene recognition (Zhou, Lapedriza, Xiao, Torralba, & 
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Oliva, 2014), fine-tuning of the pre-trained parameters of the VGG-16 on Places365 dataset 

was performed so as to leverage useful distinctions between various visual clues that relate 

to generic scenery images. A set of amendments were performed on its architecture so as to 

fit it to our purposes: Initially the final Fully Connected (FC) layer was removed and replaced 

with a new FC layer with a width of 3 nodes freezing the weights up to the previous layer 

and finally a softmax classifier was deployed so as to enable multi-class recognition. More 

specifically the EmC results into three-class image recognition: "Fire", "Flood" and "Other", 

where "Other" may represent any theme except for fire and flood events, e.g. scenes of 

interior, forests, snowy mountains, crowded streets, urban life etc. 

The EmC results are integrated in the framework to indicate the existence of fire and flood 

events in a holistic manner and the component's purpose is to give an early indication and a 

first segment of solid information about the existence of an emergency in the image. This 

information, taken from an initial observation of the whole image, is rather useful to be 

integrated into the severity level analysis. 

4.1.2    Emergency localization (EmL) 

Simultaneously with EmC, an Emergency Localization (EmL) component is deployed, which is 

responsible to semantically segment the regions where fire and flood pixels exist in case 

EmC's result indicates an emergency situation. Inspired from the recent success that 

semantic image segmentation achieved by (Chen, Papandreou, Kokkinos, Murphy, & Yuille, 

2016), the DeepLab architecture of "atrous convolution", which uses convolution with up-

sampled filters was adopted so as to solve the emergency localization problem in images. 

Atrous convolution allows a wider reception field of the convolution filters, leading to richer 

context representations, while it also combines the result feature vectors of the final 

convolutional layer with a fully connected Conditional Random Field (CRF) which provides 

refined segmentation masks as it includes neighboring context on its calculations. 

4.1.3   Object Detection (ObD) 

The Object Detector (ObD) component is responsible to provide a set of bounding boxes of 

the persons and vehicles in social media images, as well as their immediate surroundings. 

Groups of people or individuals are detected as persons, while vehicles may contain one of 

the following categories: cars, trucks, buses, bicycles and motorcycles. The basis of our 

object detection component is inspired from Faster R-CNN (Ren, He, Girshick, & Sun, Faster 

r-cnn: Towards real-time object detection with region proposal networks, 2015), pretrained 

on COCO dataset (Lin, et al., 2014), with some alterations so as to make it fit to our 

emergency event purposes. More specifically, based on (Huang, et al., 2017), the ResNet101 

feature extractor was deployed for the extraction of deep features and then an Region of 

Interest (RoI) pooling scheme was used to classify candidate boxes. The model was trained in 
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COCO dataset and only the relevant object classes were kept as valid preditions (e.g. 

vehicles, people). Vital information is expected to be extracted about the existence of 

important targets and their locations in the image that cannot be missed if a successful 

warning system is to be created. The accurate prediction of the targets' location also matters 

greatly. This piece of information that is given in the form of bounding box coordinates, 

encloses not only the silhouette form of a target but also it's immediate surroundings. 

Accurate correlation of fire or flood localization and target location wouldn't be possible in 

many cases, if an exact segmentation of a target's form was to be used. 

4.1.4   Severity level estimation 

The framework is completed with the severity level estimation component which combines 

EmC, EmL and ObD results so as to define a severity level label for each in-danger bounding 

box of the gathered social images: (a) 'Safe target', (b) 'Target possibly in danger', (c) 'Target 

in danger', which can also be interpreted as a qualitative risk assessment scale of three 

levels: 'Low', 'Medium', or 'High' respectively. 

The possible outcomes of the system logic are described here: 

a) Low risk for an emergency event we have when the EmC classifies the candidate 

image as 'other'. All the detected bounding boxes from the ObjD are declared 'Safe 

targets'. 

b) Medium risk we have when an image is classified as emergency from the EmC 

component (i.e. fire/flood). All targets that are detected from ObD are automatically 

characterized as 'Possibly in danger'. 

c) Elevation to high risk we have when a bounding box detected by ObD coincides with 

EmL emergency masks (i.e. fire/flood). 

After 10-fold cross-validation tests, it was concluded that a 60% confidence for object 

detection score provided a great balance between accuracy detection and severity level 

estimation. More specifically this threshold may result in multiple overlapping boxes for the 

same objects, a behavior that not only cannot harm the warning system but also in some 

samples could catch cases where only a portion of the object can be seen (i.e. a car half 

occluded from water or a fire-fighter fighting with flames). 

4.2  Fire and flood detection in video samples  

4.2.1   Spatio-temporal Representation of Dynamic Textures 

In order to effectively deal with the challenging nature of videos containing outdoors 

unconstrained environments, their representation should be firstly carefully examined and 

determined. The stochastic movements of the ensembles comprising dynamic textures in 
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combination with their non-rigid nature, require the adoption of general descriptors, 

capable of managing highly unpredictable and ambiguous types of videos. To this end, the 

LBP-flow descriptor is adopted, which is then encoded by Fisher vectors resulting in an 

informative mid-level descriptor. The process is shown to be able to accurately classify 

dynamic scenes whose complex motion patterns are difficult to separate otherwise. 

LBP-flow 

The descriptor LBP-flow introduced in (Avgerinakis, et al., LBP-flow and hybrid encoding for 

real-time water and fire classification, 2017) was adapted and further investigated in order 

to accurately describe videos' underlying structure, as it has proven to effectively encode 

both appearance and motion induced variations, present in dynamic textures. LBP-flow 

constitutes an extension of the well-known LBP (Wang & He, 1990), which was chosen due 

to its successful applicability in a variety of texture classification tasks (Liu, Zhao, Long, 

Kuang, & Fieguth, 2012), (Qian, Hua, Chen, & Ke, 2011), (Zhao, Ahonen, Matas, & 

Pietikainen, 2012), (Zhao & Pietikainen, 2006) and face recognition tasks (Shan, Gong, & 

McOwan, 2009), (Ahonen, Hadid, & Pietikainen, 2006). Thus, inspired by its success, LBP-

flow builds upon the original LBP and extends it over time providing a powerful shallow 

spatio-temporal descriptor. In classic LBP, the LBP value of a particular pixel is computed by 

comparing its intensity value with that of its neighboring pixels. LBP-flow extends this 

definition to also include the values of the optical flow around the pixel, so as to embed 

motion information. The representation of motion as a temporal texture is introduced by 

calculating LBP over the optical flow values in the x and y directions, x - t and y - t 

respectively. This inclusion of motion information in the LBP-flow representation enriches 

the descriptor's spatio-temporal characteristics leading to a more robust and efficient 

shallow representation. 

Fisher Encoding 

LBP-flow includes rich spatiotemporal information as a low-level local representation, but 

also allows for redundancies, such as intra-class pattern deviations and noise-induced 

artifacts. In order to constrain this noise and subsequently increase the discriminative ability 

of our descriptor, the Fisher Vector representation is adopted, transforming initial LBP-flow 

vectors of each video sample into a mid-level single vector representation, based on the 

detected most discriminating features (visual vocabulary) of a training video database. In 

this way, the size of the descriptor is significantly reduced, while at the same time 

recognition accuracy is increased. The computation of the most discriminating samples is 

performed by applying unsupervised clustering (Gaussian Mixture Model (GMM)) in the 

shallow representation hyperspace, as formed by the LBP-flow feature collection of the 

dynamic texture dataset. 
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4.2.2   Dynamic Texture Recognition and Localization 

Given the aforementioned powerful descriptor, a framework for dynamic texture 

recognition and localization was built. Fisher vectors are either used to train a binary/multi-

class Support Vector Machine (SVM) classifier or a Neural Network (NN), in order to learn to 

discriminate between two or more classes. The framework including the NN can be 

characterized as a hybrid representation scheme, as it leverages both shallow and deep 

parameters to train a final classification model. Dynamic texture localization follows, to 

spatio-temporally localize the selected dynamic texture inside, and throughout, sequential 

video samples. The scheme exploits the resulting binary model of the aforementioned 

recognition process and based on a superpixel clustering procedure leads to an accurate and 

computationally efficient localization framework. 

Dynamic texture recognition  

Dynamic texture recognition requires an accurate sampling process, so as to collect a 

sufficient number of informative feature samples to train the discriminative model. Activity 

Areas (AA) (Avgerinakis, Briassouli, & Kompatsiaris, Activity detection using Sequential 

Statistical Boundary Detection (SSBD), 2016) are used as an initial step to detect regions of 

interest and to sample interest points in them to be used for training purposes. AA are 

binary masks, extracted according to the premise that ow estimates originate either from 

actual motion, or noise, e.g. from the video capture or compression process. LBP-flow is 

then calculated over a block of 32X32 pixels, around each interest point. Subsequently, 

Fisher encoding is deployed after a Principal Component Analysis (PCA) dimensionality 

reduction step and the total set of descriptors representing the whole training corpus are led 

as an input into a Neural Network (NN) scheme. As inspired from the successful results 

presented in (de Souza, Gaidon, Vig, & López, 2016) the architecture consists of three hidden 

layers, each of which is followed by a dimensionality reduction step. The statistical power 

that Fisher vectors encapsulate in their scheme, passes in the NN as well and leads to a 

highly discriminative vector. The block diagram of the texture recognition framework is 

depicted in Figure 5. 

 

Figure 5: Block diagram of the texture recognition framework. 
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Dynamic texture localization 

Although the aforementioned descriptor can effectively capture scene dynamics for video 

classification, the adoption of a local approach is needed in order to achieve accurate 

localization of a dynamic texture within a video frame. For this purpose, a multi-scale 

superpixel scheme was implemented, as superpixels enable the grouping of pixels into 

regions with a homogeneous appearance, which are highly likely to correspond to the same 

object. Furthermore, this process also eliminates redundant image information, leading to 

the extraction of more accurate object contours. Superpixels extracted according to the 

Simple Linear Iterative Clustering (SLIC) method in (Achanta, et al., 2012), are used to 

segment the video frames. SLIC is based on a local version of K-means algorithm, where the 

only parameter that needs to be specified is the number of approximately equally sized 

superpixels. Then, an iterative 2-step process begins with each pixel being assigned to its 

nearest cluster center followed by the computation of the residual error between the new 

cluster center and previous cluster center locations as derived from L2-norm. This process is 

repeated until convergence. The distance measure used for the clustering is based on pixels' 

color and location. Finally, a post-processing step to cluster some remaining individual 

“orphaned” pixels takes place by using a connected components algorithm. 

Superpixels are then deployed in a 2-layers scheme, with each layer corresponding to a 

different scale, following a fine to coarse structure. This way, both coarse and fine details are 

successfully captured, and the influence of local noise is avoided. Next, superpixel clustering 

is carried out, which relates each superpixel in the top coarser layer with multiple 

superpixels of the finer bottom layer according to the overlap they have with each other, 

and a final descriptor characterizing the whole area covered by the superpixel of the top 

layer is extracted. 

 

Figure 6: Block diagram of the overall localization framework. 

  

After the extraction of area's descriptor, the discriminative models that have been trained in 

the aforementioned binary classification task, are used in order to localize the desired 

dynamic texture in a spatio-temporal manner. The decision is conducted locally for each 
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area covered from superpixels of the top layer. The complete localization scheme is depicted 

in Figure 6. 

4.3  Traffic analysis and management  

4.3.1   Traffic flow analysis 

A robust algorithm for detection and tracking of moving vehicles from surveillance camera 

footage operates at the basis of the traffic flow analysis system. Passing vehicles have to be 

successfully detected in each frame and then subsequently tracked as they follow their full 

trajectory on screen. The task is simultaneously performed in a cooperative manner by two 

separate modalities: (a) a generic object detector, specifically trained to discover bounding 

boxes of vehicles at an adjustable detection rate, and (b) a tracker which accepts new image 

patches as input queries and is assigned to discover the most probable position of each 

query in subsequent frames. This finally leads to the incremental construction of the 

movement trajectories for each individual vehicle that has been captured by the detector at 

some point in the frame sequence. 

To accurately compute the velocities of a detected vehicle, known pixel coordinates of the 

corresponding trajectory in the image plane have to be back-projected in real world 

coordinates in the road plane. Then, given a vehicle's traveled distance in meters and the 

time duration in seconds, velocities can be calculated. The frame per second capture ratio of 

the recorded videos is known and can be used to compute time intervals in seconds 

between consecutive frames. What is not directly available however, is a way to translate 

displacement of pixels in the image plane to the real distance in meters a particular vehicle 

has traveled in a given amount of time. In order to calculate this precisely and effectively, an 

algorithm for automatic camera calibration is needed. Once camera parameters have been 

discovered and a few basic assumptions tailored to this specific application have been 

integrated, pixel coordinates in the image plane can be successfully back-projected to 3D 

world coordinates in the road plane and therefore real vehicle displacements can be 

measured. 

Camera calibration 

In order to automatically obtain camera parameters of a traffic surveillance scene, the 

algorithm proposed by (Dubská, Herout, & Sochor, Automatic Camera Calibration for Traffic 

Understanding., 2014) was deployed which is based on detection of two vanishing points. As 

examined in (Sochor, Juránek, & Herout, 2017), knowledge of two vanishing points is enough 

to calculate camera intrinsic parameters. Moreover, the third vanishing point position can be 

easily found by application of orthogonality. The model makes some basic assumptions for 

static cameras, zero pixel skew, square shaped pixels and location of the principal point in 
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the center of the image that produce tolerable errors. By aiming to recover 3D coordinates 

belonging to vehicle trajectories, the model is used to retrieve points lying on the road 

plane, and is not applied to find arbitrary 3D locations in the video frames.  

The method resorts to vehicle motion analysis in the scene as a means of retrieving the first 

vanishing point whose direction is parallel to the road and coincides with the stream of 

traffic. The detection algorithm uses the Hough transform on successfully tracked trajectory 

points based on parallel coordinates, mapping the projective plane onto a finite space, the 

so-called diamond space, as detailed in (Dubská, Herout, Juránek, & Sochor, 2015). In order 

to detect good features to track, background subtraction is performed to limit the 

candidates to possibly only vehicle edges. Then, using the KLT tracker, features that are 

correlated with significant movement are interpreted as small straight fragments of valid 

trajectories and are allowed to vote in the diamond space accumulator. Based on the highest 

number of votes, the first vanishing point coordinates are retrieved. To discover the location 

of the second vanishing point, which is perpendicular to the first and parallel to the road 

plane, the diamond space accumulator is used again in the same manner but with the 

following constrains: edges supporting the first are excluded this time and an assumption of 

approximately horizontal scene horizon filters out nearly vertical edges. Again, the point 

with the most votes is selected as the second vanishing point. 

 

Figure 7: Illustration of three orthogonal vanishing points detected 

 

Once the first two vanishing points have been found, the third vanishing point, the focal 

length and the road plane normal vector which defines the road plane up to a scale are 

calculated. Subsequently, back-projection of a 3D image plane point onto the road plane is 

possible following the procedure described in (Schölkopf, Platt, Shawe-Taylor, Smola, & 

Williamson, 2001). However, the distance of the road plane to the camera center is 
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calculated only up to a scale. This means that any distance that is calculated from 3D points 

is not expressed directly in real units of distance. To overcome this back-projection of two 

3D points in the scene with known distance in meters (or other unit) can be applied and then 

solving for the scale factor is possible. Another method for scale inference would be to fit 

pre-made 3D car models in 3D bounding boxes in order to make the algorithm fully 

automatic with no required user input. Figure 7:illustrates the three vanishing point 

orientations as detected from the algorithm, as well as the horizon line. 

Vehicle detection and tracking 

For the purpose of detecting vehicles in video frames a deep CNN object detector was used 

that extracts deep image representations from a CNN and predicts pixel coordinates of 

bounding boxes. Similarly to 3.1.1  the aforementioned object detection architecture was 

adopted here. 

 

Figure 8: Visualization of detected vehicles and their trajectories. 

 

The core functionality of the tracker was based on the KCF tracking algorithm that was 

proposed in (Henriques, Caseiro, Martins, & Batista, 2015). The vehicle detector is used 

initially in order to detect vehicles every r video frames and initialize the new vehicle 

candidate database with new entries. Bounding box coordinates are stored over time so that 

full trajectories can be build. For every new ID its corresponding class label and a detection 

score is saved as well. Immediately after, the algorithm checks the new detections from the 

candidate pool for overlaps with already existing recent trajectories. Then, based on an IoU 

score check it rejects found boxes that exceed an overlap threshold to avoid creating 

multiple identities for the same vehicle. Next, the KCF tracker is fed with the remaining 

boxes in order to localize their position throughout sequential video frames. Future 
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detections of already tracked vehicles are also utilized in order to rectify the bounding boxes 

of the monitored vehicles. When a detection is missed, the bounding box is relocalized 

relying only on KCF update coordinates, while when the algorithm does not localize any 

tracked vehicle for several sequential video frames the vehicle is presumed to have traveled 

off the frame. To tackle overlaps between True Positive (TP) cases, which translate to when a 

correctly tracked vehicle passes in front of another confusing the tracker, the trajectories are 

merged at the current frame and the oldest ID is assigned to the resulting trajectory. Figure 

8 depicts bounding boxes and trajectories of vehicles successfully detected and tracked 

using this methodology. 

Velocity estimation 

To estimate the velocity of a tracked vehicle at a certain frame the KLT tracker is fed with 

points inside the previous box instance of the previous frame and several displacement 

calculations are produced for each point. Then, back-projection of all the displacement pixel 

pairs is applied to the road plane according to the calibration parameters that have been 

found on that specific scene and the median displacement is selected as the true value. To 

calculate the velocity in meters per second the true distance is divided with the time 

duration of a frame which is equal to 1/fps seconds. 

4.3.2   Anomaly detection in traffic scenes 

In order to deal with the challenging nature of traffic videos derived from real surveillance 

systems, the scheme should exhibit features such as generality, scalability, independence in 

external conditions (e.g. illumination changes, camera motion etc) and also simplicity for 

computational reasons. To this end, an algorithm based on the object detection described in 

the previous section is proposed. 

Initially an early descriptor is formed in a pre-defined time window concerning each object in 

the scene consists of the concatenation of all the values describing object’s speed and 

position in a specific spatiotemporal volume. Subsequently, all early descriptors extracted 

from a particular video sequence are led into a Fisher encoding scheme. This way, a visual 

vocabulary based on the most discriminating features of the whole video is built, and a more 

efficient representation is provided. Next, the computation of the most discriminating 

samples is performed by applying unsupervised clustering (Gaussian Mixture Model (GMM)) 

in the shallow representation hyperspace, as formed by the feature collection of each video. 

Next, fisher encoding follows based on the created GMM vocabulary in order to efficiently 

capture the whole frame’s dynamics. 

Finally, in order to infer about anomalous trajectories, the Support Vector Method For 

Novelty Detection of (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001) is adopted. 

Support Vector Machines (SVMs) are chosen, as they generally exhibit good performance 
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relatively to other machine learning methods at a low computational cost, while at the same 

time they are able to handle large data sets, which generally appear in real life situations. 
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5 Audio analysis v1  

The current section describes the implementation and integration of the ASR module. After 

studing state-of-the-art ASR approaches and after a thorough review of existing ASR tools 

(ie. Kaldi, CMU Sphinx, RWTH ASR, VoxForge, LumenVox etc.), investigating technical 

characteristics, such as supported platforms, language models, type of license, development 

capabilities etc., CMU Sphinx30 was selected as the base for Speech Recognition in the 

framework of beAWARE. The choice of CMU Sphinx was based on a number of advantages, 

such as open source license, large number of publications31, support for both Windows and 

Linux, available models for all the targeted languages etc. Specifically, Sphinx4 library is 

used, which is a pure Java speech recognition library. It provides a quick and easy API to 

convert the speech recordings into text with the help of CMU Sphinx acoustic models.  

5.1  Recognition process 

Speech Recognition is performed by taking an audio waveform, splitting it at utterances32 by 

using silences and then trying to recognize what is being said in each utterance, by matching 

all possible combinations of words with the audio. The extraction of the best matching 

combination is based on three entities: 

An acoustic model, which contains acoustic properties for each basic speech segment.  

A phonetic dictionary, which contains a mapping from phones (speech segments) to words. 

A dictionary can contain alternative pronunciations for the same word. 

A language model, which is used to restrict word search. Language models contain statistics 

of word sequences and define which word could follow previously recognized words. They 

help to significantly restrict the matching process by stripping words that are not probable.  

It should be mentioned here that, CMU Sphinx uses Hidden Markov models (HMMs) to 

represent acoustic model states. HMMs are an elegant generalization that leads to more 

robust performance and they are the most common framework for acoustic models in 

modern speech recognition systems. HMMs model speech by breaking it into short 

“consistent” segments that are relatively uniform within themselves. E.g. a speech signal for 

“SAM” can be broken down into three such segments, namely: ‘S’, ‘A’, ‘M’. Each segment is 

modeled by an HMM state. Each state has an underlying probability distribution that 

                                                      

30 https://cmusphinx.github.io/ 
31 https://cmusphinx.github.io/wiki/research/ 
32 Chunks of speech between pauses, containingwords and other non-linguistic sounds, which are called fillers 
(breath, um, uh, cough). 
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describes the feature vectors for its segment. The entire word can be described as a linear 

sequence of such states. 

The aforementioned three entities (language model, acoustic model and dictionary) are 

combined together in an engine to recognize speech (Transcriber). Sphinx4 is designed in 

order to be language independent, which means that the transcriber is able to perform 

Speech Recognition without modifications for different languages, by carefully designing 

these three entities in order to capture the characteristics of the language of interest. For 

many languages there are acoustic models, phonetic dictionaries and even large vocabulary 

language models available for download, however the availability resources and the 

vocabulary coverage for Greek and Italian is limited compared to English and Spanish. This 

means that Greek and Italian models need more expansion and adaptation. 

In order to use CMU Sphinx4 in a java project, we have to add the Sphinx4 libraries (namely 

sphinx4-core and sphinx4-data) to the dependencies of the project. Sphinx4 is available as a 

maven package in the Sonatype OSS repository, which should also be included in the 

project’s repositories. 

In order to perform recognition a high-level recognition interface is used, called 

StreamSpeechRecognizer, by setting four attributes: a) acoustic model, b) dictionary, c) 

language model and d) source of speech. The first three attributes are the previously 

described models, which are either existing models available online or models adapted by 

the user. They are defined by using a Configuration object, which is then passed to the 

recognizer. The source of speech is the audio file that will be analyzed. The audio format for 

the decoding must have the following formats:   

• RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz   or 

• RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, mono 8000 Hz. 

 

Especially, the sampling frequency depends on the acoustic model that is being used and the 

speech corpus that was used for the training of this model. Currently, all acoustic models are 

trained on 16kHz. Thus, input audio files should have Fs=16kHz. However, in order to avoid 

possible errors, in case an audio file of different format is passed as input to ASR, we have 

added a pre-processing step, by integrating an audio encoder able to convert different audio 

formats into the appropriate format. The java library that is used in this step is Jave33.   

An additional preprocessing step is the inclusion of a deniosing algorithm based on Power-

Normalized Cepstral Coefficients. 

                                                      

33 http://www.sauronsoftware.it/projects/jave/ 
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After StreamSpeechRecognizer finishes the analysis of the audio, another class called 

SpeechResult can be used to provide access to various parts of the recognition result, such 

as the recognized utterance, a list of words with timestamps, the recognition lattice, etc. 

In order to assist MTA in the semantic analysis of the trasncriptions, we developed a simple 

post-processing step in order to split text into potential sentences, by using the time 

durations of the silences between words. In order to make Automatic Punctuation step 

more robust, future work could be based on Dynamic Sentence Length features (Ueffing, 

Bisani, & Vozila, 2013). 

5.2  Extending the phonetic dictionary 

A phonetic dictionary provides the system with a mapping of vocabulary words to sequences 

of phonemes. It might look like this: 

Hello    H EH L OW 

World  W ER L D 

A dictionary should contain all the words we are interested in, otherwise the recognizer will 

not be able to recognize them. However, it is not sufficient to have the words in the 

dictionary. The recognizer looks for a word in both the dictionary and the language model. 

Without the language model, a word will not be recognized, even if it is present in the 

dictionary.  

In order to start with, in beAWARE ASR module, we used CMUSphinx English, Spanish, Italian 

and Greek dictionaries provided here: 

https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models 

However, even though English and Spanish models are widely supported in the web, the 

other two languages are poorly supported. Additionaly, for the beAWARE needs, we should 

extend the list of location names in all dictionaries and also include code words and 

keywords, in order to improve recognition accuracy and enable event localization through 

semantic extraction. For these reasons, we have started collecting lists of location names 

and other words and we have also built g2p-seq2seq tool 34, which is used in order to extend 

the dictionary. It is based on neural networks, it is implemented in the Tensorflow 

framework and provides a state-of-the-art accuracy of conversion. In order to expand an 

existing dictionary (the CMU English dictionary35 for example) an initial graph-to-phoneme 

                                                      

34 https://github.com/cmusphinx/g2p-seq2seq 
35 https://github.com/cmusphinx/cmudict 
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model is needed (for example, an English model 2-layer LSTM with 512 hidden units, trained 

on the CMU English dictionary is available for download in CMU Shpinx website36). By 

training the existing model in the new dictionary, we create pronounciations for the new 

words included in the extended dictionary.  

As previously mentioned, after extending the dictionary, the language model should also be 

extended, in order to include the new words. Thus, a new language model should be build. 

Shortly, building a statistical language model consists of the following steps: 

1) Text preparation: a large collection of clean texts containg all the words of interest, 

without abbreviations or non-word items. In order to clean Wikipedia XML dump, for 

example, special Python scripts like Wikiextractor can be used. 

2) Generation of the vocabulary file. This is a list of all the words in the file. 

3) Generation of the language model file (in text ARPA format, binary BIN format or 

binary DMP format) by using one of the availble training toolkits, like: SRILM37, 

CMUCLMTK38, IRSLM39 or MITLM40. 

Until now, we have started creating lists with missing words and we have trained some 

initial language models. However, this is an ongoing process and will be completed in the 

second Prototype.  

5.3  Adapting the acoustic model 

In order to improve recognition accuracy, we also performed an initial acoustic model 

adaptation. The adaptation process takes new transcribed data and improves the model we 

already have. It does not necessary adapt for a particular speaker. It just improves the fit 

between the adaptation data and the model. In order to perform adaptation we had to build 

PocketSphinx41 (a lightweight recognizer library written in C) in Eclpise, along with the 

prerequisite libraries and training tools SphinxBase and Sphinxtrain. 

The first step of the adaptation is the creation of the adaptation corpus. The corpus consists 

of: a) a list of sentences, b) the corresponding speech recordings of these sentences and c) a 

dictionary describing the pronunciation of all the words in that list of sentences. 

                                                      

36https://sourceforge.net/projects/cmusphinx/files/G2P%20Models/g2p-seq2seq-model-6.2-cmudict-
nostress.tar.gz/download 
37 http://www.speech.sri.com/projects/srilm/ 
38 https://cmusphinx.github.io/wiki/cmuclmtkdevelopment/ 
39 https://sourceforge.net/projects/irstlm/ 
40 https://github.com/mitlm/mitlm 
41 https://github.com/cmusphinx/pocketsphinx 
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For this reason, we conducted a review on publicly available speech corpora containing 

‘clean’ speech and noisy recordings in English, Spanish, Italian and Greek. Several corpora 

were selected after using criteria such as: language spoken, duration, noise contamination, 

availability of annotations, etc. Some of these databases are: Voxforge speech corpus42, 

LibriSpeech ASR corpus43, Santa Barbara Corpus of Spoken American English44, CMU_SIN 

Database45. We also created new voice recordings, containing simulated emergency calls 

from real past incidents in Spanish, Greek and Italian. Collected data were mentioned in 

D3.2. From the collected data, a subset of annotated speech recordings was selected and 

prepared for acoustic model adaptation. 

For the adaptation process, existing acoustic models are copied into the working directory of 

Pocketsphinx, along with the dictionaries and the language models. Then, by using 

Pocketsphinx, a set of acoustic model feature files is generated from the audio recordings. 

This is done with the sphinx_fe tool from SphinxBase. The same acoustic parameters should 

be used for the extraction of these features as were used to train the standard acoustic 

model.  

The next step is to collect statistics from the adaptation data. This is done using the bw 

program from SphinxTrain. Here, also the arguments in the bw command should match the 

parameters of the acoustic model.  

The next step is the creation of a transformation with Maximum Likelihood Linear 

Regression (MLLR). MLLR is a cheap adaptation method that is suitable when the amount of 

data is limited. For best accuracy MLLR adaptation is combined with Maximum a Posteriori 

Adaptation (MAP) (Oh & Kim, 2009). The mllr_solve program of SphinxTrain generates the 

MLLR transform, which is passed to the decoder to adapt the acoustic model at run-time. 

This command will create an adaptation data file called mllr_matrix. Subsequently, the 

adaptation is completed by running the map_adapt program, in order to adapt acoustic 

model files. 

The aforementioned adaptation process has currently been performed on a subset of the 

collected datasets, which was carefully prepared for adaptation. In order to improve 

recognition accuracy, we will continue to collect and prepare new telephone audio 

recordings and we will further adapt models as new recordings become available. 

                                                      

42 http://www.voxforge.org/home/downloads 
43 http://www.openslr.org/12/ 
44 http://www.linguistics.ucsb.edu/research/santa-barbara-corpus 
45 http://www.festvox.org/cmu_sin/ 
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5.4  Integration of ASR component 

The ASR component has been integrated into the operational beAWARE platform. The 

component supports all the four beAWARE languages (English, Spanish, Italian, Greek). The 

ASR communicates with the Media Hub component through socket messages. The Media 

Hub suscribes to TOP021_INCIDENT_REPORT and triggers the ASR module in case the 

attachmentType in this topic is set to "audio". The socket message form the Media Hub to 

ASR is a JSON message with the link to the audio file, the language, and the timestamp and 

the Incident ID. The input audio should be “RIFF (little-endian) data, WAVE audio, Microsoft 

PCM, 16 bit, monophonic, 16000 Hz”. However, an encoder has also been included, in case 

the input format is not the appropriate. By reading the language information, ASR 

component selects the corresponding language model, invokes the transcriber, creates the 

transcription and sends a JSON message back to the Media Hub, with the transcription text. 

Subsequently, the Media Hub creates a TOP010_AUDIO_ANALYZED topic, containing, among 

other fields, the transcribed text and the language of the user. MTA, which is subscribed to 

this topic, receives this information in order to further analyze the transcription. The ASR is 

integrated as a Maven Java project and it currently uses 200m cpu and 2048Mi memory. 
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6 Text analysis v1  

In the following we describe the currently developed and deployed text analysis pipeline.  In 

its basic version, the same tools and resources, with the exception of the tweet 

normalization step, are applied for all three types of considered inputs. In particular, text 

messages sent through the mobile application share the instant messaging characteristics, 

including short length and limited context, found in tweets. Moreover, as far as the analysis 

of transcriptions of calls is concerned, the performance of ASR on the types of inputs 

considered within the 1st prototype has not necessitated for the moment spoken language-

specific investigations. If in the course of development towards the 2nd and the final 

prototype, the quality of transcriptions deteriorates to an extent that prohibits the 

extraction of meaningful information from received calls, investigations into more flexible 

parsing techniques as well as overall pipeline adaptations to such types of inputs and the 

entailed ramifications will be investigated.  

6.1  Text preprocessing 

This step involves the sentence splitting, POS-tagging, lemmatization and morphological 

tagging tasks that are applied prior to the parsing and the steps that implement the 

extraction of the knowledge graph representation.  

 

For sentence splitting and POS-tagging we use the Stanford CoreNLP toolkit, version 3.8.0, 

provided by DKPro 1.9.1. POS-tagging models were trained using the default options; an 

example property file for training the English POS-tagger is shown in Figure 9:Figure 9:. 
 

model = ModelEN-UD.tagger 

 arch = left3words 

wordFunction =  

trainFile = format=TSV,wordColumn=0,tagColumn=1,/parsers/trainingCorpus/UD/en-ud-train-pos.tsv 

closedClassTags =  

 closedClassTagThreshold = 40 

 curWordMinFeatureThresh = 2 

debug = false 

debugPrefix =  

tagSeparator = / 

encoding = UTF-8 

iterations = 100 

lang =  

learnClosedClassTags = false 

minFeatureThresh = 5 

 openClassTags =  

rareWordMinFeatureThresh = 10 

rareWordThresh = 5 

search = qn 

sgml = false 

sigmaSquared = 0.5 

regL1 = 1.0 
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tagInside =  

tokenize = true 

tokenizerFactory =  

tokenizerOptions =  

verbose = false 

verboseResults = true 
Figure 9: Default property file example for POS-tagging  model training 

 

For lemmatization, i.e., is the reduction of inflectional forms and sometimes derivationally 

related forms of a word to a common base form, and the extraction of morphological 

features, e.g. number, case, tense, etc., we used MateTools version 3.5, provided by DKPro 

1.9.1. For training, we used anna-3.5 version for the lemmatizer and anna-3.3 for the 

morphological feature extractor; no specific training options were used, as illustrated in the 

following example training commands:  
 

java -Xmx2G -classpath ~/misc/parsers/anna-3.5.jar is2.lemmatizer.Lemmatizer -model 

/home/misc/parsers/definitiveTalnModels/es/LemmaES.tagger -train /home/misc/parsers/trainingCorpus/ 

AnCora-UPF -train.conll 

 

java -Xmx2G -classpath ~/misc/parsers/anna-3.3.jar is2.mtag.Tagger -model 

/home/misc/parsers/definitiveTalnModels/es/MorphES.tagger -train /home/misc/parsers/trainingCorpus/ 

AnCora-UPF -train.conll 

 

In the case of tweet inputs, an additional, normalization step, is applied. The current 

implementation includes the removal of emoticons and other special Twitter-specific 

elements (e.g. RT, user, etc.), as well as the normalization of hashtags, which currently 

consists in the removal of “#” character and the splitting of CamelCase words; towards a 

more tweet language-tailored approach, the ArktweetTokenizer, version 0.3.2, provided by 

DKPro 1.9.1 has been used in the current implementation.  

6.2  Parsing 

Till out ongoing investigations into a linguistic-driven methodology for parser evaluation 

with respect to downstream application requirements conclude, and given its low memory 

requirements compared to other state of the art parsers along with its competitive accuracy, 

the MST parser has been selected for deployment in the current implementation. More 

specifically, we are using version 0.5.1, provided by DKPro 1.9.1. For its training, the 

following corpora (see Section 3.3.2  ) have been used: UD-Italian-ISDT for Italian; 

UD_Greek-GDT for Greek; AnCora-UPF and UD-Spanish Ancora for Spanish; PennTreeBank 

and UD for Enligh. 

The current NLP analysis pipeline outputs three different types of structures, which 

correspond to three different levels of abstraction of the linguistic description: 
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▪ SSynt: surface-syntactic structures (SSyntSs), i.e., language-specific syntactic trees 

with fine-grained relations over all the words of a sentence; 

▪ DSynt: deep-syntactic structures (DSyntSs), i.e., language-independent syntactic trees 

with coarse-grained relations over the meaning-bearing units of a sentence; 

▪ PredArg: predicate-argument structures (PerdArgSs), i.e., language-independent 

directed acyclic graphs with predicate-argument relations over the meaning-bearing 

units of a sentence. 

 

This stratified view is strongly influenced by the Meaning-Text Theory (MTT) presented in 

(Mel'cuk, 1988). The MTT model supports fine-grained annotation at the three main levels of 

the linguistic description of written language: semantics, syntax and morphology, while 

facilitating a coherent transition between them via intermediate levels of deep-syntax and 

deep-morphology. At each level, a clearly defined type of linguistic phenomena is described 

in terms of distinct dependency structures. 

 

In the framework of beAWARE, UPF is using primarily a Universal Dependency-based 

pipeline, which uses similar approaches and tagsets across languages. In order to circumvent 

possible issues due to the unequal annotation quality of the UD structures, we develop in 

parallel tools that target a language in particular. During the first half of the project, a Penn 

Treebank-based pipeline has been setup in English. If the approach shows significantly more 

efficient than the UD-based pipeline, we will research similar approaches for other 

languages, using the alternative resources described in Section 3.3 . 

6.2.1   Towards a uniform UD-based pipeline 

Universal Dependencies is a generic framework for cross-lingual syntactico-semantic 

annotation that has been applied to over 60 languages so far, for a total of over 100 

different treebanks46. Most treebanks have been obtained through automatic conversions of 

other treeebanks, themselves in general obtained via automatic annotation. The resulting 

annotations are known to lack consistency and quality, but they have the advantage to 

provide a framework that reduces the differences across different languages. In beAWARE, 

we intend to test the usability of Universal Dependencies as intermediate representations 

for multilingual relation extraction. 

 

For surface-syntactic parsing, we train the off-the-shelf MST parser on the freely available 

UD corpora of the beAWARE languages (English, Spanish, Italian, and Greek); see Section 3.3 

. The resulting surface structures are syntactic trees with lemmas, part-of-speech tags, 

                                                      

46 http://universaldependencies.org/ 

http://universaldependencies.org/
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morphological and dependency information under the form of grammatical functions such 

as subject, object, adverbial, etc. 

 

The deep structures in this configuration consist of predicate-argument structures obtained 

through the application of graph-transduction grammars to the UD surface-syntactic 

structures. The deep and surface structures are aligned node to node. In the deep 

structures, we aim at removing all the information that is language-specific and oriented 

towards syntax:  

• determiners and auxiliaries are replaced (when needed) by attribute/value pairs, as, 

e.g., Definiteness, Aspect, and Mood: 

o auxiliaries: has overflowed-> overflow; 

o determiners: the bridge-> bridge; 

• functional prepositions and conjunctions that can be inferred from other lexical units 

or from the syntactic structure are removed; 

o reported by X-> reported X 

• edge labels are generalized into predicate argument (semantics-oriented) labels in 

the PropBank/NomBank fashion: 

o subject(reported, by X)-> FirstArgument(report, X) 

 

The UD-based pipeline doesn’t make any use of lexical resources at this point; the predicate-

argument relations are derived using syntactic cues only. The deep input is a compromise 

between (i) correctness and (ii) adequacy in a generation setup. Indeed, the conversion of 

the UD structures into predicate-argument structures depends not only on the mapping 

process, but also on the availability of the information in the original annotation. Table 17 

shows that different labels that the UD-based graph-transduction grammars currently 

produced. 

 

Table 17: Semantic labels in the output of the UD-based pipeline 

Semantic 

label 

Type Description Example 

A1/A1INV Core 1st argument of a predicate reported-> a citizen 

A2/A2INV Core 2nd argument of a predicate reported-> a flood 

A3/A3INV Core 3rd argument of a predicate reported-> to the authorities 

A4, A5, A6 Core 4th to 6th arguments Very uncommon 

AM Non-Core None of governor or dependent 

are argument of the other 

reported-> sending a message 

LIST Coordinative List of elements reported-> and-> warned 

NAME Lexical Part of a name bridge-> Angeli 

DEP UKN Undefined dependent N/A 
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The following phenomena should be highlighted: 

▪ Alignment between surface and deep nodes 

On the deep nodes, we use one or more feature id with as suffix the line number of 

the corresponding surface nodes: on a deep node, id1=4|id2=15 means that this 

deep node is aligned with the surface nodes on the lines 4 and 15 of the 

corresponding surface structure. Only elements triggered by other elements (as 

opposed to be triggered by the structure of the sentence) are aligned with deep 

nodes. That is, a subcategorized preposition is aligned with a deep node, while a void 

copula or an expletive subject is not. 

▪ Core relations 

Each defined core relation is unique for each predicate: there cannot be two 

arguments with the same slot for one predicate. If a predicate has an A2 dependent, 

it cannot have another A2 dependent, and it cannot be A2INV of another predicate. 

▪ Auxiliaries 

Auxiliaries are mapped to the universal feature "Aspect".47 

▪ Conjunctions/prepositions 

The prepositions and conjunctions maintained in the deep representation can be 

found under an A2INV dependency. A dependency path Gov-AM-> Dep-A2INV-> Prep 

is equivalent to a predicate (the conjunction/preposition) with 2 arguments: Gov <-

A1-Prep-A2-> Dep. 

▪ Modals 

They are mapped to the universal feature "Mood". 

▪ Pronouns 

o Relative: only subject and object relative pronouns directly linked to the main 

relative verb are removed from the deep structure. 

o Subject: a dummy pronoun node for subject is added if an originally finite 

verb has no first argument and no available argument to build a passive; for a 

pro-drop language such as Spanish, a dummy pronoun is added if the first 

argument is missing. 

▪ Punctuations 

Only the final punctuations are encoded in the deep representations: the main node 

of a sentence indicates if the latter is declarative, interrogative, exclamative, 

suspensive, or if it is involved in a parataxis, with the feature "clause_type". 

 

Our graph-transduction grammars are rules that apply to a subgraph of the input structure 

and produce a part of the output structure. During the application of the rules, both the 

                                                      

47 http://universaldependencies.org/u/feat/index.html 

http://universaldependencies.org/u/feat/index.html
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input structure (covered by the leftside of the rule) and the current state of the output 

structure at the moment of application of a rule (i.e., the rightside of the rule) are available 

as context. The output structure in one transduction is built incrementally: the rules are all 

evaluated, the ones that match a part of the input graph are applied, and a first piece of the 

output graph is built; then the rules are evaluated again, this time with the rightside context 

as well, and another part of the output graph is built; and so on. The transduction is over 

when no rule is left that matches the combination of the leftside and the rightside. Table 18 

sums up the current state of the graph-transduction grammars and rules for the mapping 

between surface-syntactic structures and UD-based semantic structures. 

 

Table 18: Graph-transduction rules for UD-based deep parsing.                                                                            
*Includes rules that simply copy node features (~40 per grammar) 

Grammars # rules* Description 

Pre-processing 76 
Identify nodes to be removed 
Identify verbal finiteness and tense 

SSynt-Sem 120 

Remove idiosyncratic nodes 
Establish correspondences with surface nodes 
Predict predicate-argument dependency labels 
Replace determiners, modality and aspect 
markers by attribute-value feature structures 
Identify duplicated core dependency labels below 
one predicate 

Post-processing 60 

Replace duplicated argument relations by best 
educated guess 
Identify remaining duplicated core dependency 
labels (for posterior debugging) 

 
Figure 10 and Figure 11 respectively show a syntactic structure as parsed by the MST parser 

and the semantic structure produced by the graph-transduction grammars. Bacchiglione is 

correctly identified as the first argument of overflow (A1), and the relation between 

overflow and bridge is correctly identified as non-core (AM), but no more information is 

provided at this point (in particular, that bridge is a location in this case); the fact that Angeli 

bridge is a named entity is not recognized by the pipeline. The relations with the suffix INV 

indicate an inverted core relation between the two elements; their purpose is to maintain a 

tree format (in which every node has at most one governor), easier to process, as opposed 

to a graph format (in which a node can have several governors). 
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Figure 10: Surface-syntactic UD-Structure 

 

 

 
 

Figure 11: UD-based predicate-argument structure 
 
The main issue with these deep structures is that they are underspecified, that is, some 

information is missing. The main reason is that one of our main objectives has been to 

remove as much information as possible that cannot be inferred from a deeper level of 

abstraction, as, e.g., an ontological representation. For instance, if it is not possible --or too 

risky- to predict an argument slot, we leave it undefined; if, because the annotation doesn't 

allow to distinguish between the two, we have a choice between leaving too many syntactic 

elements or removing meaningful words, we choose to remove words. This way, our deep 

representation is much closer to one actually used in a generation pipeline that starts from 

abstract data, as the one used in beAWARE in WP5. 

 

At this point, all structures are still containing language-specific lexical units, and they need 

to be mapped to a language-independent vocabulary. This is performed through the use of a 

“conceptual” dictionary that contains abstract unambiguous labels (in English) and the 

corresponding lexical units in the different languages, as shown in the following sample 

entry (“NN” refers to nouns, “VB” to verbs, and “JJ” to adjectives): 

 

"danger" { 

  ENG = { 

    lex = "danger_NN_01" 

    lex = "endanger_VB_01" 
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    lex = "dangerous_JJ_01" 

  } 

  ITA = { 

    lex = "pericolo_NN_01" 

    lex = "pericoloso_JJ_01" 

  } 

  SPA = { 

    lex = "peligro_NN_01" 

    lex = "amenazar_VB_01" 

    lex = "peligroso_JJ_01" 

  } 

 

} 

 
Another graph-transduction grammar (under development) takes care of producing the final 

structure. Table 19 summarizes the tools used in the UD-based pipeline. 

 
Table 19: Tools used in the UD-based pipeline 

 System used 

Tokenizer Stanford Core NLP 

Lemmatizer Stanford Core NLP 

PoS Tagger Stanford Core NLP 

Morhological tagger Stanford Core NLP 

Syntactic parser MST 

Semantic parser UPF grammars 

6.2.2   Towards language-specific pipelines 

For alternative English surface-syntactic (SSynt) annotation, many annotation schemes are 

available. We chose to use the Penn Treebank representation followed in the CoNLL'09 

shared task on dependency parsing, because we believe it is one of the most syntactically 

sound representations that are available; in particular: 

▪ Its dependency tagset is fine-grained enough to take into account the most basic 

syntactic properties of English; unlike the UD-based tagset that is a hybrid 

syntax/semantics tagset, which does not reach the same level of syntactic fine-

grainedness. 

▪ One lexeme corresponds to one and only one node in the tree. For instance, in a 

relative clause, the relative pronoun is viewed from the perspective of its function in 

the relative clause and not from the perspective of its conjunctive properties. 

▪ Unlike in UDs, the subject is a dependent of the inflected top verb, not of the non-

finite verb, which might also occur in the sentence. This accounts for the syntactic 

agreement that holds between the auxiliary and the subject; the relation between 

the non-finite verb and the subject is more of a ``semantic'' one, and thus made 

explicit at a higher level of abstraction. The finite verb in an auxiliated construction is 

a dependent of the closest auxiliary. 
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▪ Again unlike UDs, subordinating and coordinating conjunctions depend on the 

governor of the first group, and govern the one of the second group. This hierarchical 

approach accounts for the linking properties of conjunctions. Exceptions to this are 

the relative pronouns, as mentioned above. 

 

For the Penn Treebank-based analysis pipeline, we use Bohnet and Nivre’s 2012 joint parser 

and tagger (see Section 3.3 for reference), to which we plugged in another set of graph-

transduction grammars. The pipeline currently outputs deep structures at two different 

levels of representation: 

▪ DSynt: deep-syntactic structures (DSyntSs), i.e., syntactic trees with coarse-grained 

relations over the meaning-bearing units of a sentence; 

▪ PredArg: predicate-argument structures (PerdArgSs), i.e., directed acyclic graphs 

with predicate-argument relations over the meaning-bearing units of a sentence. 

 

Deep syntactic (DSynt) structures are dependency structures that capture the 

argumentative, attributive and coordinative relations between full words (lexemes) of a 

sentence. Compared to SSynt structures, in DSynt structures, functional prepositions and 

conjunctions, auxiliaries, modals, and determiners are removed, as in the deep UD 

structures. Each lexeme is associated with attribute/value pairs that encode such 

information as part of speech, verbal finiteness, modality, aspect, tense, nominal 

definiteness, etc. The nodes are labeled with lemmas; in addition, they are aligned with the 

surface nodes through attribute/ value pairs (each DSynt node points to one or more SSynt 

node, using the surface IDs). All nodes have a PoS feature, which is copied from the SSynt 

output. The abstraction degree of the DSynt structures is in between the output of a 

syntactic dependency parser and the output of a semantic role labeler as the PredArg 

structures presented below: on the one hand, they maintain the information about the 

syntactic structure and relations, but, on the other hand, dependency labels are oriented 

towards  predicate/argument relations, and the dependencies directly connect meaning-

bearing units, that is, meaning/void/functional elements are not available anymore.  

Predicate-argument relations include I, II, III, IV, V, VI; modifier relations include ATTR and 

APPEND (the latter is used for modifiers that generally correspond to peripheral adjuncts); 

the other two relations are COORD (for coordinations) and NAME (connecting parts of 

proper nouns). Table 20 summarizes the different labels used at this level. 

Table 20: Deep-syntactic labels 

I Core 1st argument of a predicate reported-> a citizen 

II Core 2nd argument of a predicate reported-> a flood 

III Core 3rd argument of a predicate reported-> to the authorities 

IV, V, VI Core 4th to 6th arguments Very uncommon 

ATTR Non- Core Adjunct reported-> yesterday 

COORD Coordinative List of elements reported-> and-> warned 

NAME Lexical Part of a name bridge-> Angeli 
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APPEND Non- Core Peripheral adjunct reported-> (sending a message) 

 

In order to obtain DSynt structures, as for the UD-based pipeline, we run a sequence of rule-

based graph transducers on the output of the SSynt parser.  But unlike the UD-based 

grammars, the SSynt-DSynt mapping is based on the notion of hypernode. A hypernode, 

known as syntagma in linguistics, is any surface-syntactic configuration with a cardinality 

equal or superior to 1 that corresponds to a single deep-syntactic node. For example, to 

report or a citizen constitute hypernodes that correspond to the DSynt nodes report and 

citizen respectively. Hypernodes can also contain more than two nodes, as in the case of 

more complex analytical verb forms, e.g., would have been reported. In this way, the SSyntS–

DSyntS correspondence boils down to a correspondence between individual hypernodes and 

between individual arcs, such that the transduction embraces the following three subtasks: 

(i) hypernode identification, (ii) DSynt tree reconstruction, and (iii) DSynt arc labeling. 

  

Table 21 shows the different steps of the SSynt–DSynt mapping. During a two-step 

preprocessing, specific constructions and hypernodes are marked. Auxiliaries, meaning-void 

conjunctions and determiners are easy to identify, but to know which prepositions belong to 

the valency pattern (subcategorization frame) of their governor, we need to consult a 

lexicon extracted from PropBank and NomBank. The output of these preprocessing steps is 

still a SSynt structure. The third transduction (SSynt-DSynt) is the core of this module: it 

“wraps” the hypernodes into a single node and manages the labeling of the edges, again 

looking at the PropBank-based lexicon (i.e., at the valency pattern of the predicates), 

together with the surface dependencies. For instance, a subject of a passive verb is mapped 

to a first argument (I), while the subject of a passive verb is mapped to a second argument 

(II). An object introduced by the functional preposition to is mapped to second argument in 

the case of the predicate want, but to the third in the case of give, etc. The SSynt-DSynt 

mapping inevitably produces duplications of core relations, which need to be fixed. The 

post-processing grammar evaluates the different argument duplications and modifies some 

edge labels in order to get closer to a correct structure. 

 
Table 21: Graph-transduction rules for deep-syntactic parsing. *Includes rules that simply copy node features 

(~30% of the rules in each grammar) 

 
Grammars 

# rules* Description 

Pre-processing 1 15 
Assign default PB/NB IDs. 
Mark passive, genitive, possessive constructions. 

Pre-processing 2 17 Mark hypernodes. 

SSynt-DSynt 55 

Wrap hypernodes. 
Assign DSynt dependencies. 
Transfer aspect/modality as attr. 
Mark duplicate relations. 
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Mark relative clauses. 

Post-processing 78 
Relabel duplicate relations. 
Reestablish gapped elements. 
Mark coord. constructions. 

 

Predicate-argument (PredArg) structures are representations with abstract semantic role 

labels which also capture the underlying argument structure of predicative elements (which 

is not made explicit in syntax). Lexical units are tagged according to several existing lexico-

semantic resources, namely PropBank, NomBank, and VerbNet. The current system is 

limited to choose the first meaning for each word. During this transition, we also aim at 

removing support verbs. For the time being, this is restricted to light be-constructions, that 

is, constructions in which the second argument of be in the DSyntS is a predicate P that can 

have a first argument and that does not have a first argument in the structure. In this case, 

the first argument of the light be become the first argument of P in the PredArg 

representation; for instance, a structure like levee <-I be II-> cracked is annotated as cracked 

A1-> levee. 

 

The predicate-argument relations are sorted in two subtypes: on the one hand, the 

argumental, or “core” relations: Argument1, Argument2, Argument3, Argument4, 

Argument5, Argument6; and, on the other hand, the “non-core” relations: Benefactive, 

Direction, Extent, Location, Manner, Purpose, Time, NonCore (which is the only 

underspecified relation). The non-core labels come mainly from the corresponding labels in 

the Penn Treebank, that is, they are provided by the surfacesyntactic parser. Table 22 lists 

the relations used at the PredArg level. 

 

Table 22: Predicate-argument labels 

Semantic label Type Description Example 

Argument 1 Core 1st argument of a predicate reported-> a citizen 

Argument 2 Core 2nd argument of a predicate reported-> a flood 

Argument 3 Core 3rd argument of a predicate reported-> to the authorities 

Argument4,5,6 Core 4th to 6th arguments Very uncommon 

Benefactive, 
Direction, Extent, 
Location, Manner, 
Purpose, Time 

Non-Core Circumstancials flood-> at Angeli Bridge (Location) 

NonCore Non-Core None of governor or dependent 
are argument of the other 

reported-> sending a message 

NAME Lexical Part of a name  bridge-> Angeli 

Set coordinative List of elements reported-> and-> warned 

Elaboration Non- Core Underspecified reported-> (sending a message) 

 

In order to obtain the PredArg structures, we run another sequence of graph-transducers on 

the output of the DSynt parser. The first grammar in this module creates a pure predicate-
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argument graph, with the mapping of DSynt relations onto PredArg relations according to 

PropBank/NomBank. Coordinating conjunctions are linking elements in the Penn Treebank 

and DSynt representations; in a predicate-argument graph, they are represented as 

predicates, which have all the conjuncts as arguments and which receive all incoming edges 

to the coordinated group. Lexical units are assigned a VerbNet class. Once this is done, a few 

post-processing grammars are applied; they recover the shared arguments in coordinated 

constructions, remove light verbs, and remove the distinction between external and non-

external arguments (i.e., for all predicates that have an A0, we push all the arguments one 

rank up: A0 becomes A1, A1 becomes A2, etc.). PropBank, NomBank, VerbNet classes are 

assigned through a simple dictionary lookup. For this purpose, we built dictionaries that can 

be consulted by the graph-transduction environment and that contain the classes and their 

members, together with the mappings between them. Tab summarizes the different steps of 

this module. 

 

Table 23: Graph-transduction rules for mapping to PredArg structures. *Includes rules that simply copy node 
features (~30% of the rules in each grammar) 

Grammars # rules* Description 

DSynt-Sem 59 

Assign core dependencies. 
Recover shared arguments. 
Establish coord. conj. as predicates. 
Assign VerbNet classes. 

Post-processing 1 11 
Recover shared arguments in coordinated 
constructions. 
Mark light verbs. 

Post-processing 2 23 
Remove light verbs. 
Assign frames (FrameNet). 

Post-processing 3 30 Normalize argument numberings. 

Post-processing 4 31 Introduce non-core dependencies 

 

Figure 12 and Figure 13 show sample structures at the three points in this analysis pipeline. 

 

 
 

Figure 12: Surface-syntactic Structure 
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Figure 13: Deep-syntactic (Left) and PredArg (Right) structures 

 

Table 24 summarizes the tools used in the English-specific pipeline. 

Table 24: Tools used in the Penn Treebank-based pipeline 

 System used 

Tokenizer Stanford Core NLP 

Lemmatizer MATE tools 

PoS Tagger MATE tools 

Morhological tagger MATE tools 

Syntactic parser MATE tools 

Semantic parser UPF grammars 

 

6.3  Knowledge graph derivation  

6.3.1   Entities and events semantic resolution  

In order to determine the semantics of the extracted entities and events, the current 

implementation uses DBpediaSpotlight (off-the-shelf REST service version 1.0, through the 

implementation of a pipeline-compliant wrapper) to obtain de-referenceable links against 

DBpedia.  

At this stage, the obtained DBpedia links are propagated as such in the subsequent steps 

that deal with the identification of locations and the factoring of the resulting graph-based 

representation of the analyzed inputs. Specifically, there is no checking and validation with 

respect to their meaningfulness and coherency considered within the overall context of the 

analyzed input, thus leaving room for noisy identity resolution. For example, English 

mentions of “square” tend to be identified as referring to Square Tallaght, a shopping mall in 

Dublin (http://dbpedia.org/resource/The_Square_Tallaght), rather than as instances of the 

DBpedia class “dbo:Square” (http://dbpedia.org/ontology/Square); this said, it is interesting 

to note that even for explicit mentions of given squares (e.g., the Times square, the 

Aristotelous square, etc.) for which corresponding DBpedia resources exist, in several cases 

http://dbpedia.org/resource/The_Square_Tallaght
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it is not straightforward to extract such instance-of relationships as such information is not 

necessarily included in the DBpedia knowledge base (i.e., posing a SPARQL query in order to 

retrieve the types of the given resources, will not include dbo:Square in the returned 

classes).  

The addition of a validation and overall coherency encoding methodology will also 

contribute to the mitigation of ramifications pertinent to incompleteness of the reference 

knowledge base, in our case DBpedia. Although not integrated in the current version, we 

have been already investigating in parallel linking against BabelNet towards the leverage of 

further external knowledge that can enable the amelioration of such phenomena. 

For location extraction, we combine Stanford NER and linguistic dependency-based patterns 

to identify candidate location mentions, in synergy with the DBpediaSpotlight links, in order 

to determine whether a mention refers actually to a location or not. The approach is based 

on the following premises: i) if a place-indicating mention, such as “square”, “bridge”, 

“street”, etc., is linked via a NAME dependency to a proper name one, then the 

concatenation of is marked as a location; ii) if a DBpedia resource link has been obtained for 

a, single- or multi-word, mention, and among its DBpedia types, the classes dbo:Place or 

dbo:SpatialThing are included, then the mention is marked as a location;  iii) likewise, if the 

mention under consideration has been tagged by the NER tool as a location.   

Though fairly simple, such approach can afford adequate performance, provided that the 

locations of interest are included in DBpedia and that dependency parsing achieves 

reasonably robust performance. However, neither of the two can be taken for granted, and 

as already outlined neither state-of-the-art NER tools nor DBpedia, as a resource, can afford 

the extent of coverage required for the location detection and geotagging needs within 

beAWARE. Towards the latter, we have started investigations into the use of 

OpenStreetMap as the reference geo-knowledge base and into the extension of the 

candidate selection mechanism so as to ensure as a much a comprehensive coverage as 

possible, while avoiding the scalability and portability issues resulting from gazetteer-based 

search approaches and hand crafted patterns. 

6.3.2   Event-centric representation  

Once the outputs of the afore-described NLP tasks are available, the final step consists in 

their aggregation and factoring into a structured representation that can form the basis for 

the population of the beAWARE knowledge base, where the analysis results of all modalities 

end up in order to be semantically integrated and enable the elicitation of further, implicit 

knowledge, by means of reasoning. 
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The resulting linguistic structures described in the previous Section form the backbone for 

the derivation of structured, knowledge graph representations. Each predicate and 

argument mention is mapped to a respective instance occurrence; the type currently is a 

direct reflection of the lexical form, further augmented via DBpedia pertinent information; 

the latter though, is currently only implicit, as in view of the under-investigation semantic 

coherency approach, we refrain from currently propagating the associated DBpedia classes, 

that would currently amount to a mere list rather than their consolidation.  

 

Drawing upon the knowledge graph extraction paradigms discussed in Section 3.3 the 

extracted frames (i.e. the semantic predicates), with the current focus being on verbal and 

nominal ones, are represented as reified objects, connected to their participants by means 

of properties that determine their semantic roles. In addition, to semantic types and roles 

information, instances are enriched with textual features relevant to linguistic generation, 

such as number and label information; this is needed in order to ensure that the KB is 

populated with accurate information (e.g., distinguishing between plural and singular 

mentions has a direct impact on the cardinality of the mentioned entity). Thereby, we also 

ensure that the report generation requests, that follow the semantic integration and 

reasoning tasks taking place in the knowledge base, provide the level of detail required for 

producing the desired reports (e.g., in order to be able generate number-sensitive 

statements and thus report whether it is one car that is impacted or several cars). Likewise 

for label that is used for capturing the proper name of Named Entities occurrences in the 

pertinent language (e.g., “Matteotti square”; “piazza Matteotti”, etc). As currently there has 

been no need for catering for coreferential mentions, no further actions are taken; would 

this necessity materialize, then all mentions referring to the same real word entity or event 

would be mapped into a single instance. 

 

In the figures that follow, example outputs are given in the JSON-based format developed 

for communication between the text analysis and knowledge base service modules. Figure 

14: illustrates the extracted structured representation, given the input sentence "The sewers 

have flooded". As illustrated, two instances have been derived, namely one of type “Sewer” 

and one of type “Flood”, with the former being the element that undergoes the incident 

(flood in our case) denoted by the latter. As also shown, the “number” field for Sewer has 

the value “PL”, which stands for plural, while both instances have no “label” values, as 

neither of them refers to a Named Entity. 
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Figure 14: Resulting knowledge graph for the input sentence "The sewers have flooded." 

 
 

 
Figure 15: Resulting knowledge graph for the message "Matteotti square has flooded." 
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Figure 15 shows the resulting graph representation for the sentence “Matteotti square has 

flooded”, which does contain a Name Entity instance, i.e. “Matteotti square, thus resulting, 

as shown, in a corresponding “label” value. Last, Figure 16 shows an example graph for a 

non-English input, namely “L' argine vicino a ponte è crollato.", which means “The levee near 

the bridge has collapsed.”, depicting the rendering of the extracted Italian mentions into 

respective class instances. As can be observed, since for the moment the obtained DBpedia 

links are not processed further, only the URL of the localised Italian DBpedia is included. 

 

Figure 16: Resulting knowledge graph for the message "L' argine vicino a ponte è crollato." 
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7 Evaluation 

7.1  Visual analysis  

In this section, an evaluation report for the developed methods and techniques regarding 

visual analysis is provided. 

7.1.1   Fire and flood detection in social media images 

For the fire and flood detection in social media images pipeline, as described in section 4.1 , 

quantitative results are provided for the EmC and the EmL modules and qualitative results 

for the overall framework’s performance. We made several experiments on benchmark fire 

and flood datasets. For Emergency Classification (EmC) we use the MediaEval’s Disaster 

Image Retrieval from Social Media (DIRSM) dataset (Avgerinakis, et al., 2017), while for 

Emergency Localization (EmL) we use the BowFire dataset (Chino, Avalhais, Rodrigues, & 

Traina, 2015). 

Emergency classification evaluation 

Image classification evaluation took place in MediaEval’s Disaster image retrieval from social 

media (DIRSM) dataset, where flood and other type of images were provided. A 10 fold cross 

validation was followed to evaluate Emergency Classification (EmC) module. Recognition 

accuracy results and comparison with State-of-the-Art are provided in Table 25, where we 

can see that EmC outperforms all image classification methods that were presented in 

MediaEval’s Multimedia Satelite Task 2017, scoring 1.77% higher from the second rival. 

Table 25: Image classification results on DIRSM Dataset and comparison with SoA. 

Authors Accuracy 

CERTH 97.5% 

(Nogueira, et al.) 87.88% 

(Avgerinakis, et al., 2017) 92.27% 

(Ahmad, Konstantin, Riegler, Conci, & Holversen, 2017) 95.11% 

(Lopez-Fuentes, Weijer, Bolaños, & Skinnemoen) 70.16% 

(Dao, Pham, Nguyen, & Tien, 2017) 87.87% 

(Ahmad, Ahmad, Ahmad, & Conci) 95.73% 

(Bischke, et al., 2017) 95.71% 

 

A separate classification evaluation also took place on a collection of social media images 

that were retrieved from the Flickr API48 using search querries related to realistic fire of 

flood scenarios such as “flooded city”, “forest fire” etc. Here, the classes were 3: “fire”, 

                                                      

48 https://www.flickr.com/services/api/  

https://www.flickr.com/services/api/
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“flood” and “other”, while there were some examples where some of the two coincide and 

the discrimination was quite difficult to tell. Nevertheless, our framework achieved a mean 

accuracy recognition rate that reached 87.32%, with 83.7% “other” class achieving the 

lowest score, “fire” the highest with 93.3% and 88.96% for “flood”. 

Emergency Localization evaluation 

Table 26: Fire localization results on BowFire Dataset and SoA comparison. 

Authors Precision Recall F1-Score 

CERTH 39% 77% 52% 

(Celik & Demirel, 2009) 52% 68% 53% 

(Rossi, Akhloufi, & Tison, 

2011) 
< 40% 20% - 30% < 30% 

(Rudz, Chetehouna, 

Hafiane, Laurent, & Séro-

Guillaume, 2013) 

63% <50% 50% - 60% 

(Chino, Avalhais, 

Rodrigues, & Traina, 

2015) 

50% 60 – 70% 50% - 60% 

(Chen, Yeh, & Yin, 2009) 37% 84% 45% 

(Avalhais, Rodrigues, & 

Traina, 2016) 
62% 77% 63% 

(Zhang, Wang, & Lv, 

2013) 
50% 31% 29% 

 

Emergency localization evaluation took place on BowFire (Chino, Avalhais, Rodrigues, & 

Traina, 2015) and VideoWaterDB (Mettes, Tan, & Veltkamp, Water detection through spatio-

temporal invariant descriptors, 2017) datasets for fire and flood segmentation respectively. 

Comparisons regarding the fire segmentation results took place on BowFire by computing 

recall and precision metrics and are depicted in Table 26. As far as recall is concerned, we 

can observe that our results are really close to (Chen, Yeh, & Yin, 2009) and tied for second 

place with (Avalhais, Rodrigues, & Traina, 2016) outperforming the rest, meaning that we 

found a great deal of pixels that were groundtruthed as fire. On the other hand, as far as 

precision is concerned, we didn’t achieve as well as we expected, as there were a great deal 

of background pixels that were misclassified as fire, leading to lower precision rates than 

other SoA techniques. These false alarms however, can be alleviated in our warning 

framework, as the use of EmC component can eliminate a great deal of images that do not 

contain a threat, which can eventually increase the precision rate on the final severity level 

estimation. 

Qualitative results 

The overall framework’s capabilities are evaluated with qualitative results and a set of 

successful and failure images are provide in Figure 17 bellow. 
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Figure 17: Qualitative results for the fire and flood detection system. 

 

We visualize the severity level of danger in the resulting candidate target bounding boxes 

from the ObD component by using a three color palette to draw them: (a) Green for ’Safe’ 

targets, (b) yellow for ’Possibly in danger’ targets, and (c) red for targets classified as being 

’in danger’. A second color pallet is used to draw the embossed regions that result from EmL 

component and are colored as red for fire and blue for flood regions. Analysing the 

qualitative results, we can see that in very demanding situations such as the top-left picture 

the framework is responding well, where a person fired up can be easily isolated from the 

background environment which is quite irrelevant with the emergent event. A successfully 

captured flood event is depicted in the bottom left picture, where we can see the people 

who are in the water obtain an ’in danger’ label contrary to the one who is in the car and far 

from the flood and is labelled as ’possibly in danger’. Analysing now the failure cases, we can 

see that in some cases we might have a good EmL mask, but fail to recognize the picture as 

emergent using EmC, giving an erroneous ’safe’ label, like the car which is on fire on the top-

right picture. Other, more frequent cases of failure are showcased in the bottom right 

picture, where a series of flooded cars is depicted. As we can see there might be some cases 

where the ObD may not find all the targets or the EmL mask is not so well formed, leading to 

missing or erroneous labels. This was very usual in flood scenarios, where the water covers a 

great deal of the object or the object occludes the water, leading to bad bounding boxes and 



   D3.3 – V0.7 D2.1 – V1.0  

 

Page 92 

segmentation masks, contrary to fire events where the fire usually occludes the target and 

not vice versa. Overall, on the most of the test samples that were examined, rarely a target 

in danger did not get at least a ’Medium’ level tag. The most frequent cases of inconsistency 

and confusion happened between ’Medium’ and ’High’ level tags, because EmL did not work 

so well in flood cases, which is mainly attributed to the lack of groundtruth masks to train 

the model. Flood detection worked very well in the provided dataset but it the needs for 

more training data to achive better generalization in more emergent situations is evident. 

7.1.2   Fire and flood detection in video samples 

Regarding the Dynamic texture recognition and localization techniques described in 4.2 the 

evaluation took on four challenging benchmark datasets, namely Dyntex (Peteri, Fazekas, & 

Huiskes, 2010), MovingVistas (Shroff, Turaga, & Chellappa, 2010), Yupenn (Derpanis, Lecce, 

Daniilidis, & Wildes, 2012) and VideoWaterDatabase (Mettes, Tan, & Veltkamp, Water 

detection through spatio-temporal invariant descriptors, 2017). All datasets were split into 

1/3 for testing and 2/3 for training, creating 3 different train/test splits. In all cases, our 

algorithm's accuracy was calculated in multiple tasks and compared with the SoA, 

demonstrating improved performance. 

Dynamic texture recognition evaluation 

Dyntex is one of the earliest and most renowned benchmark datasets for dynamic textures, 

containing a wide variety of texture classes including dynamic water textures. In our 

experiments, we use the benchmark classification split of DynTex dataset into three subsets: 

alpha, beta and gamma. These subsets contain video samples from 3, 10 and 10 different 

classes respectively, often including high intra-class variance. The overall average score of 

the method proposed is provided in Table 27, where it can be seen that it outperforms the 

SoA in all 3 subsets. More specifcally, compared against 6 other SoA works the results 

indicate remarkably high scores, exceeding 97% in all cases. 

Table 27: Comparisons with SoA in DynTex dataset for alpha, beta and gamma splits. 

 alpha beta gamma 

CERTH 100% 97.4% 98.0% 

(Dubois, Peteri, & Menard, 2015) 88% 66% 65% 

(Smith, Lin, & Naphade, 2002) 83% 67% 65% 

(Xu, Quan, Zhang, Ling, & Ji, 2015) 85.2% 76.9% 74.8% 

(Zhao, Ahonen, Matas, & Pietikainen, 

2012) 
83.3% 73.4% 72% 

(Xu, Huang, Ji, & FermΓΌller, 2012) 83.6% 73.2% 72.5% 

(Ji, Yang, Ling, & Xu, 2013) 84.8% 75.2% 73.3% 
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Figure 18: Multi-class classification accuracy of LBP-Flow in gamma split of DynTex dataset. 

 

The confusion matrix is provided in Figure 18. As shown, the descriptor achieves high 

accuracy, over 95%, for 8 out of 10 classes. In the lower-right part of the matrix, it can be 

seen that misclassifications of water-related classes usually refer to other classes related to 

water texture, showing that the algorithm still detects water-related dynamic scenes 

robustly. 

Moving vistas is the most challenging dataset of all, as it contains video samples of low 

quality using a moving camera, different viewpoints and significant illumination changes. 

The multi-class recognition accuracy of LBP-flow was estimated and compared with the SoA 

on scene recognition in (Derpanis, Lecce, Daniilidis, & Wildes, 2012) and (Shroff, Turaga, & 

Chellappa, 2010). The results, depicted in Table 28, show that our hybrid scheme achieves 

significantly better recognition rates compared to the SoA for the multi-classification task, 

with detailed classification accuracy for each class provided in Figure 19. 

Table 28: Recognition accuracy on Moving vistas dataset. 

 Score 

CERTH 67.7% 

(Derpanis, Lecce, Daniilidis, & Wildes, 2012) 41% 

(Shroff, Turaga, & Chellappa, 2010) 52% 

 

 

Figure 19: Multi-class classification accuracy of LBP-Flow in Moving vistas dataset. 
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Similarly, to the Dyntex data, the cost of feature extraction in the low resolution Moving 

vistas dataset is kept quite low, requiring about 9 fps. This low computational cost makes 

proposed method appropriate for near real time monitoring in surveillance applications. 

YUPENN comprises of 420 videos, mainly of low quality, from 14 different classes including 

water and a forest fire dynamic texture class. It constitutes a challenging dataset, as each 

class is represented by a limited number of videos of short duration, ranging from 37 up to 

180 frames. Despite these drawbacks, experiments on multi-classification tasks were 

conducted for all classes, with the results depicted in Table 29. In these experiments, LBP-

flow is compared with many approaches from the SoA, also reported in (Mumtaz, Coviello, 

Lanckriet, & Chan, A Scalable and Accurate Descriptor for Dynamic Textures Using Bag of 

System Trees, 2015) and (Derpanis, Lecce, Daniilidis, & Wildes, 2012). It is clear that LBP-flow 

achieves remarkable accuracy rates for all classes, near or above 90%, including the water 

and fire tecture classes outperforming the SoA in many cases. 

Table 29: Comparisons with SoA in YUPENN dataset for all classes. 

Scene 

classes 
CERTH 

(Mumtaz, 

Coviello, 

et al., 

2015) 

(Nister & 

Stewenius, 

2006) 

(Derpanis, 

Lecce, 

Daniilidis, 

& Wildes, 

2012) 

(Grossberg 

& Huang, 

2009) 

Oliva 

and 

Torralba, 

2001) 

(Marszalek, 

Laptev, & 

Schmid, 

2009) 

(Shroff, 

Turaga, & 

Chellappa, 

2010) 

Beach 83.3 83 63 87 50 90 37 27 

Street 100 90 70 83 47 50 83 17 

Elevator 100 100 80 83 47 50 67 50 

Forest 

fire 
83.3 100 80 83 47 50 67 50 

Fountain 87 67 37 47 13 40 30 7 

Highway 95.7 87 73 77 30 47 33 17 

Lighting 

storm 
66.7 100 80 90 83 57 47 37 

Ocean 91.7 90 80 100 73 93 60 43 

Railway 95 80 73 87 43 50 83 3 

River 95.8 80 73 93 57 63 37 3 

Sky 95.8 93 77 90 30 90 83 33 

Snowing 100 83 77 33 53 20 57 10 

Waterfall 95.8 67 53 43 30 33 60 10 

Farm 100 77 57 57 57 47 33 17 

 

The VideoWaterDatabase introduced in (Mettes, Tan, & Veltkamp, Water detection through 

spatio-temporal invariant descriptors, 2017) consists of 260 high definition videos, where 

the presence of water needs to be detected. This dataset contains water and non-water 

samples from 7 and 5 classes respectively. The patterns between the two classes are quite 

similar and very diffidicult to model. Comparisons with other dynamic texture modeling 
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methods based on LBP are provided in Table 30, where the method is compared against 4 

other SoA works, which use different approaches for texture representation. 

Table 30: Comparisons with SoA in VideoWaterDatabase. 

 Score 

CERTH 98.8% 

(Mettes, Tan and Veltkamp, 2017) 98.4% 

(Zhao & Pietikainen, 2006) 93.8% 

(Zhao, Ahonen, Matas, & Pietikainen, 2012) 93.3% 

(Qi, Li, Zhao, Hong, & Pietikäinen, 2016) 97.2% 

 

Dynamic tecture localization evaluation 

Instances of the localization process for VideoWaterDatabase are provided in Figure 20. As it 

can be seen, the algorithm succeeds in capturing local nonwatery areas occupying only a 

small part of the frame (a),(e), while at the same time challenging water scenes containing 

shadows and running water (c),(h) are also correctly localized. The minor errors of our 

algorithm can be attributed to its general non-water based nature, and the omission of any 

post-processing steps which would smooth the final results. 

We also examine our method's eficacy in localization task for the fire texture, using videos 

from the YUPENN dataset. Qualitative results of our algorithm's performance on the test 

videos are presented in Figure 21, where transparent blue color is used to depict regions 

where fire was detected by our method. The variations in fire texture and appearance are 

captured in most cases, demonstrating that our method can be efectively applied on 

different textures.  

 

Figure 20: Instances of water localization in VideoWaterDatabase dataset. 

 



   D3.3 – V0.7 D2.1 – V1.0  

 

Page 96 

 

Figure 21: Instances of fire localization in Yupenn dataset. 

 

7.1.3   Traffic analysis and management 

We evaluated our traffic analysis methods in the NVIDIA AI CITY challenge49. Teams that 

entered the competition had the opportunity to experiment and evaluate their algorithms 

on three separate traffic analysis challenge tracks: (a) traffic flow analysis that focused on 

speed estimation of vehicles, (b) anomaly detection, for the detection of anomalous events 

such as car crashes or stalled vehicles and (c) multi-camera vehicle detection and re-

identification. Moreover, a real-world evaluation dataset was made available for each track. 

In the sections that follow we present the experiments that took place and our evaluation 

scores for the first two tracks of the challenge. 

Vehicle tracking and speed estimation evaluation 

The dataset that was provided for the speed estimation track is composed of 27 videos and 

each one is a sequence of 1800 high definition resolution frames. The recorded videos depict 

highway traffic at several locations from various viewpoints. The camera in most of the 

videos is static, except at some locations where small trembling can be spotted, presumably 

due to windy conditions. Some videos also contain duplicate sequential frames at an 

unpredictable rate for an unknown reason which makes vehicles appear static. We 

presumed that when such frames appear no real time has passed and we chose to copy 

previous speed estimates. The overall score S1 of this track incorporates a measure of the 

quality of the detections and the accuracy of the speed measurement and is defined as: 

                                                      

49 https://www.aicitychallenge.org  

https://www.aicitychallenge.org/
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𝑆1 = 𝐷𝑅(1 − 𝑁𝑅𝑀𝑆𝐸) 

where, DR is the detection rate and NRMSE is the normalized root mean square error 

(RMSE) of speed estimation. A vehicle is said to be detected if it was localized in at least 30% 

of frames it appeared in and NRMSE is the normalized RMSE across all submissions, obtained 

via min-max normalization. Our vehicle detector and tracker did manage to achieve a high 

detection rate score of 89%. The RMSE score of our speed estimator is 27.30 which appears 

to be higher that other teams participating in the challenge. Further investigation needs to 

take place in order to detect the possible inefficiencies of our speed estimation approach 

and further improve its accuracy. 

Anomaly detection evaluation 

The NVIDIA dataset for anomaly detection track comprises of 100 videos of 15 minutes each, 

at 800X410 resolution. It constitutes a challenging dataset as it contains a great variety of 

real traffic scenarios, severe camera motion, different weather conditions, illumination 

changes, occlusions and many low resolution shots. In our effort to handle video sequences 

containing a variety of camera motions, such as zoom in/out or even a complete change of 

view, we chose to divide them into sub clips characterized by static view, so as to develop 

different models in each of them. Evaluation is based on anomaly detection performance, 

measured by the F1-score, and detection time error, measured by RMSE. More specifically 

the score is calculated as: 

𝑆2 = 𝐹1(1 − 𝑁𝑅𝑀𝑆𝐸) 

where a true-positive (TP) detection will be considered as the predicted anomaly within 5 

minutes absolute time distance of the true anomaly that has the highest confidence score, a 

false-positive (FP) is a predicted anomaly that is not a TP for some anomaly and a false-

negative (FN) is a true anomaly that was not predicted. RMSE is calculated between the 

ground truth anomaly time and the predicted time for all TP predictions. NRMSE is the 

normalized RMSE obtained from min-max normalization across all submissions. The 

algorithm reached an F1-score of 0.33 and the detection time RMSE was 227. Overall, we 

managed to surpass two other competing teams. 

7.2  Audio analysis 

In order to evaluate recognition results, we developed a testing framework, with the use of 

the 5prealpha release of Pocketshinx and Sphinxtrain. Before building Pocketshinx, first, we 

had to build also Sphinxbase (which is a support library required by Pocketsphinx). In order 

to test the effect of different audio sampling frequencies, we created multiple instances of 

the same audio file, by changing its sampling frequency. In our testing framework, we 

created separate folders for each language and each sampling frequency, containing test 
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audio files, along with the corresponding ‘test.fileids’ files (containing the names of the test 

audio files) and ‘test.transcription’ files (containing their corresponding transcriptions). To 

test recognition we used pocketsphinx_batch decoder, after setting the required 

parameters, as shown below:  

pocketsphinx_batch \ 

 -adcin yes \ 

 -cepdir wav \ 

 -cepext .wav \ 

 -ctl test.fileids \ 

 -lm `<your.lm>` \    # relative path to the language model 

 -dict `<your.dic>` \ # relative path to the dictionary 

 -hmm `<your_hmm>` \  # relative path to acoustic model folder 

 -hyp test.hyp 

The pocketsphinx_batch command performs speech recognition in all audio files mentioned 

in the test.fileids file and writes the transcription result to test.hyp. Then, we use 

word_align.pl in order to compare recognition results with the original transcriptions, stored 

in test.transcription file, by using the following command: 

word_align.pl   test.transcription   test.hyp 

The word_align.pl is a perl script, which is part of Sphinxtrain distribution and is used to 

compute the error rate. 

For evaluation of the ASR performance, we used the following datasets: 

• http://www.openslr.org/12/    

• http://www.repository.voxforge1.org/downloads/it/Trunk/Audio/Main/8kHz_16bit/ 

• http://www.repository.voxforge1.org/downloads/it/Trunk/Audio/Main/16kHz_16bit/ 

• http://www.repository.voxforge1.org/downloads/el/Trunk/Audio/Main/ 

• http://www.repository.voxforge1.org/downloads/es/Trunk/Audio/Main/ 

The overall resulting WERs for the four languages were 

English = 20.11%, Italian =13.09%, Spanish =14.03%, Greek =21.09%  
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The poor recognition of English can be explained by the differences in the accent of the 

speakers. The model is trained on US English accent. Additionaly, since the testing datasets 

contain clean speech, results are expected to deteriorate if the models are tested in noisy 

environments. Future work will aim on more advanced denoising techniques.   

Some other observations we made from the different testing trials are that: 

- The original transcriptions should contain no punctuation marks, because word_align.pl 

counts punctuation marks and the words that are connected to them as errors.  

- Special attention should be given to special characters in Italian, Spanish and Greek by 

saving the transcriptions in UTF-8 format. 

- The sampling frequency of the audio recording and the frequency in which the acoustic 

model was trained should match. An acoustic model may have very poor detection rate 

when tested on recordings of different sampling frequency than the one used during its 

training. 

- It seems that recording sampling frequency does not have an influence on recognition, if 

we convert the sampling frequency of the file to match the frequency of the acoustic model. 

For example, if we record an audio on 44kHz and we convert it to 16kHz and then test it with 

a 16kHz acoustic model, the recognition accuracy will be the same as if it was originally 

recorded on 16kHz.   

- The English model is very vulnerable to accent. Since, it is trained on US English accent, it 

has low accuracy when tested on British accent. This should be taken care of in future work, 

by ensuring that different accents are covered, for all models, but especially the English one.    

- There is inter-speaker variability on the results, with the gender having significant effect on 

the results. For example, the Spanish model needs to be further trained, by using more 

female subjects.  

7.3  Text analysis 

In this section, we provide an evaluation of the UD-based and the Penn-Treebank-based 

analysis pipelines. 

For the UD-based pipeline, we report on the evaluation of the Part-of-Speech tagging (Table 

31, Table 33, Table 35, Table 37), on the syntactic dependency parsing ( 
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Table 32, Table 34, Table 36, Table 38), and the deep analysis (Table 39). For this, we use the 

official UD test sets as provided in the CoNLL 2017 shared task50. For the evaluation of the 

deep analysis, we annotated manually about 900 deep tokens (~75 sentences) in English and 

Spanish at this point; further evaluations, including coverage for Italian and Greek will be 

carried out during the second half of the project. For the dependency relation assignment, 

we provide both the results of the parser only, using gold standard features, and of the 

whole pipeline, that is, using the features predicted by the previous modules, in order to 

reflect the accuracy in a real-life setting. 

Table 31: Results of the evaluation of the UD-based PoS tagging (Greek) 

PoS tag Recall Precision 

NOUN 0.9321739 0.8355417 

PUNCT 0.9313815 1.0 

DET 1.0 0.96156085 

ADJ 0.8653396 0.6798528 

AUX 0.91150445 0.9809524 

ADV 0.9111111 0.8523908 

PART 0.9897698 1.0 

SCONJ 0.962963 0.9017341 

VERB 0.9043977 0.87108654 

CCONJ 0.9498681 1.0 

ADP 0.7048611 0.9902439 

PRON 0.8898129 0.9861751 

PROPN 0.48916408 0.8586956 

X 0.33070865 0.56 

NUM 0.67021275 0.9402985 

 
Table 32: Results of the evaluation of the UD-based dependency parsing (Greek) 

 UAS LAS 

Gold PoS, Lemma and Feats 84.03 77.61 

Predicted PoS, Lemma and Feats 74.05 64.90 

 

Table 33: Results of the evaluation of the UD-based PoS tagging (English) 

PoS tag Recall Precision 

PRON 0.9791474 0.97869384 

SCONJ 0.7209302 0.8857143 

PROPN 0.7817919 0.7143486 

VERB 0.9197438 0.92217606 

ADP 0.96432114 0.9284351 

NOUN 0.9070668 0.8336299 

PUNCT 0.9059884 0.9918929 

CCONJ 0.9878214 0.9945504 

ADV 0.87510204 0.9061707 

ADJ 0.86296517 0.880651 

DET 0.9836498 0.98468846 

                                                      

50 http://universaldependencies.org/conll17/ 

http://universaldependencies.org/conll17/
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AUX 0.9839465 0.9558155 

PART 0.9873016 0.9242199 

NUM 0.6604478 0.8962025 

X 0.23021583 0.74418604 

SYM 0.59782606 0.9166667 

INTJ 0.75 0.9574468 

 

Table 34: Results of the evaluation of the UD-based dependency parsing (English) 

 UAS LAS 

Gold PoS, Lemma and Feats 83.79 79.65 

Predicted PoS, Lemma and Feats 77.63 71.51 

 

Table 35: Results of the evaluation of the UD-based PoS tagging (Spanish) 

PoS tag Recall Precision 

ADJ 0.908776 0.8142783 

ADP 0.9974796 0.9975993 

DET 0.9940178 0.9811865 

PUNCT 0.8169148 0.99980617 

NOUN 0.96965563 0.9229462 

PROPN 0.8998785 0.8678228 

VERB 0.94282407 0.8844734 

NUM 0.8659044 0.9731308 

CCONJ 0.99652535 0.9944522 

PRON 0.9314602 0.94432455 

ADV 0.9456776 0.9648391 

AUX 0.91425043 0.94095236 

SCONJ 0.91645986 0.93977946 

SYM 0.8378378 1.0 

PART 0.7222222 0.8125 

INTJ 0.53846157 1.0 

 

Table 36: Results of the evaluation of the UD-based dependency parsing (Spanish) 

 UAS LAS 

Gold PoS, Lemma and Feats 85.62 80.69 

Predicted PoS, Lemma and Feats 79.65 73.73 

 

Table 37: Results of the evaluation of the UD-based PoS tagging (Italian) 

PoS tag Recall Precision 

VERB 0.9321267 0.91049725 

DET 0.9953271 0.9861111 

PROPN 0.819802 0.82965934 

PUNCT 0.8212766 1.0 

AUX 0.9876543 0.9546539 

NOUN 0.9671339 0.9191548 

ADP 0.9939136 0.99512494 

ADJ 0.9045454 0.78552634 

PRON 0.9393204 0.94621027 
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SCONJ 0.8181818 0.92045456 

ADV 0.9326683 0.9396985 

CCONJ 1.0 1.0 

NUM 0.877193 0.97402596 

X 0.3846154 0.8333333 

SYM 1.0 1.0 

 

Table 38: Results of the evaluation of the UD-based dependency parsing (Italian) 

 UAS LAS 

Gold PoS, Lemma and Feats 88.00 83.25 

Predicted PoS, Lemma and Feats 82.03 75.95 

 

Table 39: Results of the evaluation of the UD-based deep graph-transduction grammars 

 LAS 

English 79.83 

Spanish 67.28 

 

In the following we report the evaluation results for the English-specific, PennTreebank-

based analysis pipeline; respective evaluations for Spanish-specific analysis will be carried 

out during the second half of the project, as part of the investigations into performance 

trade-off between using generic versus language-specific analysis. More specifically, we 

report the numbers of the MATE tools parser, which assigns jointly lemmas, parts of speech, 

morphological features, and dependencies (Table 40). For the analysis of the deep analysis, 

we annotated manually a gold standard of about 300 sentences (5,000 deep tokens); the 

precision and recall of the hypernode identification (Table 41) and the labeled and unlabeled 

attachment scores are provided (Table 42). A formal evaluation of the PredArg structures 

has not been carried out at this point. 

 

Table 40: Results of the evaluation of the PTB-based joint parsing 

 UAS LAS 

English 93.67 92.68 

 

Table 41: Results of the evaluation of hypernode identification 

 Precision Recall 

English 97.00 99.96 

 

Table 42: Results of the evaluation of the deep-syntactic graph-transduction grammars 

 UAS LAS 

English 96.74 91.24 
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The results of the evaluation of the English-specific pipeline are better than that of the 

generic UD-based pipeline, but it remains to be seen if this has an actual impact on the 

overall performance of the analysis component in beAWARE. 

The aforementioned evaluations have been carried out using the typical methodology for 

assessing the performance of dependency parsing, namely in terms of the similarity of the 

predicted output with a given gold tree in absolute terms, meaning that all errors are 

counted equal. However, from a linguistic point of view, errors may be less or more severe 

depending on the predicted labels and the misplacement of branches. For example, 

confusing a direct object with an indirect object may not be as severe as confusing it with 

the subject, and hanging a branch far away from its right position may be more grave than 

hanging it closer. 

To address this issue, UPF has been carrying out extensive experiments on linguistics-

oriented evaluation of dependency parser. To this end, we extended the two most 

commonly used dependency parsing metrics, namely Unlabeled Attachment Score --UAS-- 

and Labeled Attachment Score --LAS--, with penalization coefficients based on linguistically 

motivated relation hierarchies and on relation importance, and incorporated the notion of 

distance between the gold and the predicted heads. Thus, 46 new different metrics were 

proposed, by both combining the different coefficients with UAS and LAS, and by 

themselves. 

With the objective of studying the effect of the different linguistic hypothesis on the 

evaluation, and with the major goal of assessing which evaluation metric is more indicative 

of the quality of the dependency parsing, we have conducted both an intrinsic an extrinsic 

evaluation to see which of the intrinsic metrics correlates better with the extrinsic ones. 

 

We first conduct an intrinsic evaluation, relying on the available data from the CoNLL 2017 

Shared Task on Multilingual Parsing from Raw Text to Universal Dependencies. We compute 

UAS, LAS and the proposed new metrics on a subset of the system outputs for English, 

Spanish and French languages, composed of 12,713, 35,758 and 6,111 tokens respectively.  

We also conduct an extrinsic evaluation. As no direct downstream application is available, 

we decided to use the UD-based deep structures. We manually generated deep parsing 

structures for a subset of the sentences of the CoNLL 2017 system outputs to constitute the 

gold standard, containing 943, 930 and 938 tokens respectively. Then, we fed the 

correspondent surface parsing structures into a deep parser, producing deep parsing 

structures for each candidate system, which were then evaluated with the gold standard 

generating deep parsing metrics. 
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To evaluate the results, we are currently studying which of the surface dependency parsing 

metrics correlated better with the deep recall LAS metric. The results will be reported in the 

final deliverable.  
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8 Conclusions and Next Steps 

8.1  Conclusions 

This deliverable reports on the basic methodological framework for image/video, audio and 

text analysis including techniques for named entities recognition, concept extraction from 

textual content, concept linking and relations, speech recognition and multimedia concept 

detection. The document relies on the work that have done in the first seventeenth months 

of the beAWAREproject in the Tasks 3.2 and 3.3. It serves the needs and requirements as 

they have determined in the aforementioned section 2 and extensively described in 

Deliverable D2.1. Furthermore, the progress of the work that has been made in this period 

met the initial objectives of the current WP3 and is aligned with the beAWARE’s general 

objectives. Specifically, we have already developed and deployed interoperable modules for 

multilingual text analysis, for multimedia (image/video) analysis and for automatic speech 

recognition analysis. These modules interact with the beAWARE framework and support the 

decision making process for addressing extreme crisis events. However, this effort need to 

be refined and enhanced as described in the following section. 

8.2  Next Steps 

8.2.1   Image and video analysis 

Most of the visual analysis components that we described previously currently incorporate 

basic approaches so as to extract and deliver valuable information to the beAWARE decision 

support system. In order to deal with more challenging scenarios and to provide more solid 

analysis results we will continue to enchance our methods and techniques and then evaluate 

them as well so as to track the progress. 

For the modules related to fire and flood detection from social media images, namely the 

EmC, EmL and ObD, the next steps include further and more customized training of the deep 

CNN architectures that are deployed, with more data related to fire and flood scenarios, so 

as to better tailor our algorithms to respond well in those types of challenges. More 

specifically, an approach for object detection based on occluded models would greatly aid 

that purpose since most of the targets we are trying to detect are occluded from flood or fire 

pixels. In order to get better segmentation results from the EmL, a bigger dataset will be 

compiled to train the Deeplab model. Moreover, to properly extract severety levels 

according to CAP, more sophisticated rules will be designed.  

For the modules of the task related to fire and flood detection from video samples we plan 

to explore the option of evaluating the deep architectures that were used in 3.1.1  . To 
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modify them accordingly for video analysis, a keyframe extractor will be implemented that 

will select the most representative video frames and the analysis will be performed in or 

arround those moments. The algorithms are expected to get a speed boost as well.  

For our traffic analysis and management schemes, we will continue to explore better 

techniques for automatic camera calibration so as to improve our speed estimation results. 

In addition, we will also create and evaluate a sophisticated describtor, that will encode 

motion information patterns from the vehicles found in the scene based on optical flow. A 

new model will be then trained in order to estimate traffic levels of highways based on 

motion patterns. 

Finally, new components that will incorporate some or all of the aforementioned techniques 

will be gradually constructed in order to analyse footage from UAVs. The algorithms will be 

properly modified and new models will be trained in order to accommodate the analysis of 

UAV captured footage. Additionally, some techniques such as the EmL flood segmentation 

model will be evaluated in real time camera feed from a dedicated static camera that will be 

placed in Vicenza so as to monitor water levels in a critical city location and warn about 

possible flooding situations. 

8.2.2   Audio analysis 

In order to improve recognition accuracy and make speech recognition more robust CERTH 

will continue adapting acoustic models, as new recordings become available. We will also 

continue expanding dictionaries in order to include all possible location names, keywords 

and missing words. Future work will also focus on the implementation of more advanced 

denoising techniques in order to improve recognition accuracy in noisy environemts and on 

more advanced automatic punctuation techniques, in order to facilitate the textual analysis. 

Finally, regarding the English model, more emphasis should be given to the different 

accents, in order to ensure that all accents are covered. 

8.2.3   Text analysis 

As far as text analysis concerned, and as already sketched above, next steps include, among 

others, the incorporation of a more elaborate strategy for location mentions candidate 

selection and their disambiguation using OpenStreetMap data as the underlying reference 

knowledge base. Semantic abstraction, intra- and across the different languages is another 

direction, along which investigations have already commenced via the integration of linking 

against BabelNet, and the preliminary work into the definition of a common reference 

conceptual structure model to which the predArg representations extracted in different 

languages will be mapped. Moreover, we will continue the ongoing study on new parsing 

evaluation metrics, so as to improve the correlation between intrinsic parser evaluation and 
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the analysis accuracy in downstream applications, and eventually identify the best parsing 

framework for the purpose of beAWARE. In addition, enhancements to meet the scope and 

coverage as entailed by the incremental addition of new use cases for the planned pilots will 

be catered for as needed, including tweet normalization and adaptations for spoken 

language parsing. Last but not least, we will continue working on the compilation of 

annotated copora to be used as training data for the planned statistical parsing (and 

generation, as will be described in D5.4) investigations. 
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