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Executive Summary 

This deliverable describes the advanced methods to produce multilingual emergency reports 

and their implementation as part of the final version of the Multilingual Report Generation 

(MRG) module. It reports advances during months M18 to M34 of the beAWARE project in 

tasks T5.3 (Content selection and report discourse structure planning), T5.4 (Multilingual 

linguistic surface report generation) and T5.5 (Evaluation of emergency report generation). 

The work presented here elaborates on the contents of deliverables D5.2 and D7.6. 

The advances reported cover the advanced methods for mapping ontological representations 

onto linguistic structures, and for rule-based and statistical multilingual linguistic surface 

report generation. We also present the linguistic datasets used for the development and 

training of the linguistic models and resources applied to multilingual generation and also the 

linguistic analysis component reported in D3.4. UPF is responsible for all the work presented 

in this deliverable.  

In addition to the description of advanced methods for T5.3 and T5.4, and as part of T5.5, this 

document also includes qualitative and quantitative evaluations of (i) the rule-based FORGe 

generator and (ii) the deep learning-based TLin lineariser, with state-of-the-art results for both 

approaches. We also list several publications and dissemination events related to the datasets 

and methods developed. 
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Abbreviations and Acronyms  

ConS Conceptual Structure 

DnS Description and Situation 

DoA Description of Action 

DSyntS Deep-Syntactic Structure 

dul DOLCE+DnS Ultralite 

EL Entity Linking 

FORGe Fabra Open-source Rule-based Generator 

JSON JavaScript Object Notation 

KB Knowledge Base 

KBS Knowledge Base System 

LAS Labelled Attachment Score 

LG Language Generation 

LSTM Long Short-Term Memory 

MAP Mean Average Precision 

MorphS Morphological Structure 

MRG Multilingual Report Generator 

MTT Meaning-Text Theory 

NE Named Entity 

NLG Natural Language Generation 

NLP Natural Language Processing 

PCA Principal Component Analysis 

PoS Part of Speech 

PredArg Predicate-Argument  

RDF Resource Description FrameWork 

RNN Recurrent Neural Network 

RST Rhetorical Structure Theory 

SemS Semantic Structure 

SRL Semantic Role Labelling 
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SW Semantic Web 

UDs Universal Dependencies 
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1 Introduction 

Report generation is implemented within the overall beAWARE system in the Multilingual 

Report Generation (MRG) service, a data analysis and processing component of the business 

layer. MRG receives requests for report generation, through the message bus, containing 

ontological contents in JSON format, issued by the Knowledge Base Service (KBS). The content 

received consists of a list of incidents belonging to nearby locations with distinct timestamps. 

Each incident description contains details about the type and the set of participating objects. 

These descriptions are created by using information extracted from the data analysis services 

(i.e. text analysis, speech recognition, image analysis, video analysis) and are semantically 

integrated by the KBS. Report generation processes the contents received in a request in two 

steps, first by addressing content selection, and then by applying multilingual linguistic report 

generation (see Error! Not a valid bookmark self-reference.). 

During the reporting period, UPF worked as planned on the development of the 

aforementioned resources and tools towards the completion of the final beAWARE platform. 

Furthermore, UPF dedicated efforts towards making these resources reusable and in line with 

the current trends in the Natural Language Processing (NLP) field. Indeed, during the time 

frame of the beAWARE project, two important shifts have been taking place in NLP: first, in 

the usage of annotated data, where Universal Dependencies (UDs) have become increasingly 

prominent in NLP, replacing language-specific annotations. Second, deep learning techniques 

have become dominant in NLP in the past few years. However, in Natural Language 

Generation (NLG), little work has been done so far in these directions. In D5.2, UPF reported 

on NLG experiments carried out on language-specific datasets and by using Support Vector 

Machine techniques. Meanwhile, due to the new advances in the field, it was decided to 

interrupt these experiments and switch to UD-based datasets and neural techniques. For this 

reason, we tackled the creation of new datasets for the whole NLP community, and trained 

state-of-the-art neural models on them. 

The current deliverable is structured as follows: Section 2 details the specificities of the 

conversion of Knowledge Base contents onto linguistic structures to be used as input by the 

beAWARE generator. Section 3 presents the final version of the Universal Dependency-based 

datasets created to train statistical generators. Section 4 describes the improvements made 

to the Fabra Open-source Rule-based Generator (FORGe) and reports on the development of 

a new neural lineariser. Following, Section 5 presents the results of various qualitative and 

quantitative evaluations of both systems. Finally, Section 6 summarises dissemination efforts 

Content 
selection 

Linguistic 
generation KBS 

“Smoke has been 

detected in la Devesa. 3 

people are impacted.” 

Figure 1: internal architecture of the MRG 
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made by UPF in terms of publications and event organisation, and Section 7 concludes the 

document. 
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2 Types of reports generated by the Knowledge Base System 

For the second prototype, the report of incidents was simplistic: all incidents were stored in 

the Knowledge Base System (KBS) but only the last one was reported. For the final prototype, 

all detected and reported incidents are being used for the generation of the reports. 

The Multilingual Report Generation (MRG) module generates two types of reports: (i) 

summaries of all incidents sent by the KBS (SumALL) and (ii) summaries of incidents per time 

frame (SumTIME). In practice, the data are the same but the way they are being processed 

differs: for  SumALL, if an incident is exactly the same as a previous incident, it is not reported 

whereas, for SumTIME identical incidents can be reported more than once across time frames 

(but not within the same time frame). For instance, if the KBS sends four events of fire 

reported in Valencia in three different time frames, SumALL will only return one “Fire in 

Valencia” report, while SumTIME will return three “Fire in Valencia” reports (one by time 

frame). 

Both types of summaries consist of a title, which is used to label the overall incident as 

visualised in the Public Safety Answering Point map, and a description, which captures the 

system detected incidents. The content extraction process from KBS data in each case is 

described in the following. 

2.1  Summaries of all incidents (SumALL) 

When a KBS report request is received, two different content extraction strategies are applied, 

due to the different data sources: one for video and image and another one for text and audio. 

For video and image, the incident type is identified, and the participants are collected.  

Figure 2 shows a Traffic incident involving a human and 3 dogs. 

Some aggregations can take place at this level: for example, if two different incidents of the 

same type (e.g. Traffic) are reported in the same request, the participants are aggregated in a 

single, generic incident of that type. 

For text and audio, the content extraction is more complex, due to the richer relations 

between participants produced by the text analysis component. The content extraction takes 

into account these relations to identify the different parts of a generated report: incident type, 

object, location and qualitative modifiers (strong, weak, etc.). Once all the parts are identified, 

the same aggregation strategy is applied on top of it. Figure 3 shows a Wind incident, in which 

it is stated that there is a strong risk that wind will affect the Albufera Natural Park. 

As final step, duplicated incidents are filtered out, in order to avoid repetition. The final set of 

contents extracted from the incidents is properly structured so it can be consumed by the text 

generator. 
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Figure 2: KBS sample for video- and image-detected events in JSON format 
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Figure 3: KBS sample for text- and audio-extracted events in JSON format 

2.2   Summaries per time frame (SumTIME) 

The SumTIME summaries are generated from an incoming set of multiple incidents, provided 

by the KBS. Those incidents are sorted by their timestamp and grouped in a given time frame 

(e. g. 30 minutes) in order to aggregate them for each time frame. For each group, incidents 

are processed in order to extract the necessary information for the grammar-based 

generation, discarding any duplicate incidents, as explained in the report description 

generation section. Once the information has been extracted, it is passed to the text generator 

and finally a start-end time header is added to each time frame group. Each event is stored in 

a JSON file with all its specifications. 
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2.3  From KBS to MRG 

For both SumALL and SumTIME, each event is mapped to a linguistic structure (“conceptual” 

structure) for further processing. All events in SumALL and all events of a particular time frame 

SumTIME are processed in one single structure, so that events can be grouped together and 

rendered as a cohesive paragraph (as opposed to individual sentences) by the generation 

module. Figure 4 shows a partial JSON structure for a Humidity event in la Devesa on 11 

November 2019 at 10.15. Together with other events of the same time frame, this JSON is 

mapped to the corresponding Predicate-Argument template shown in Figure 5, used as input 

to the beAWARE generator (see Section 4). 

Figure 4: Partial KBS sample in the JSON format 

Figure 5: Partial generator input sample (Predicate-Argument template); top in CoNLL format, 

bottom in graphical format 
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For the time frame “10:10-10:20”, the following text is returned by the MRG pipeline for all 
events of that time frame: 

Humidity and strong wind have been reported in La Devesa. Fire there. Risk of fire, 
strong wind and heat. Heat has been reported in Valencia. 

The illustration of the different steps performed by the MRG pipeline is provided in Section 
4.1. 
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3 Final datasets and Surface Realisation Shared Tasks  

As mentioned in the introduction, UPF tackled the large-scale annotation of Universal 

Dependency-based datasets to be used as training material for Natural Language Generation 

Systems. In order to validate these datasets and make the community aware of their 

existence, in 2018 and 2019, UPF co-organised the first two international shared tasks on 

multilingual surface realisation (SR’18 and SR’19), using as starting point data obtained from 

the official UD repository. In this section, we give an overview of (i) the tasks, (ii) the creation 

of the datasets and (iii) of the tools used to obtain them. The results obtained by the 

participating teams are presented in Section 6.1  

3.1  Task overview 

Universal Dependencies (UDs) is a generic framework for cross-lingual syntactico-semantic 

annotation that has been applied to over 80 languages so far, for a total of over 140 different 

treebanks.1 Most treebanks have been obtained through automatic conversions of other 

treebanks, who themselves have been obtained via automatic annotation. The resulting 

annotations are known to lack consistency and quality but they have the advantage to provide 

a framework that reduces the differences across different languages. In beAWARE, we 

developed the first multilingual UD-based dataset for training statistical generators. 

The annotated surface structures are syntactic trees with lemmas, part-of-speech tags, 

morphological and dependency information under the form of grammatical functions such as 

subject, object, adverbial, etc. We developed a converter for UD structures to obtain parallel 

“deep” data and thus serve as input for deep generators as part of WP5. By using the 

structures at these two levels, we have two different outputs for Natural Language Generation 

(in bold, the beAWARE languages, which were the only supported languages in D3.3): 

 Shallow Track (T1) 
o Input: unordered UD dependency trees with lemmatised words that hold PoS 

tags and morphological information 
o Task: determine word order and inflect words 
o Languages with data: Arabic, Chinese, Czech, Dutch, English, Finnish, French, 

Greek, Hindi, Indonesian, Italian, Japanese, Korean, Portuguese, Russian, 
Spanish 

 Deep track (T2) 
o Input: unordered predicate-argument tree with lemmatised content words 

that hold coarse-grained PoS tags and semantic information  
o Task: introduce functional words, resolve morphological agreements, 

determine word order and inflect words  

                                                      

1 http://universaldependencies.org/ 

http://universaldependencies.org/
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o Languages with data: Chinese, English, French, Greek, Italian, Portuguese, 
Spanish 

3.2  General specifications of the data 

The shallow track structures are obtained by simply removing the order and surface forms 

information from the original structures. The deep structures in this configuration consist of 

predicate-argument structures obtained through the application of graph-transduction 

grammars to the UD surface-syntactic structures. The deep and surface structures are aligned 

node to node. In the deep structures, we aim at removing all the information that is language-

specific and oriented towards syntax:  

 determiners and auxiliaries are replaced (when needed) by attribute/value pairs, as, 

e.g., Definiteness, Aspect, and Mood: 

o auxiliaries: was built-> build; 

o determiners: the building-> building; 

 functional prepositions and conjunctions that can be inferred from other lexical units 

or from the syntactic structure are removed: 

o built by X-> built X 

 edge labels are generalised into predicate argument (semantics-oriented) labels in the 

PropBank/NomBank fashion: 

o subject(built, by X)-> FirstArgument(build, X) 

Figure 6, Figure 7, and Figure 8 show original, surface and deep structures respectively. 

 

 
Figure 6: Original UD structure in the CoNLL-U format (top: graphical representation) 
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Figure 7: Shallow track input in the CoNLL-U format (top: graphical representation) 

 

 
Figure 8: Deep track input in the CoNLL-U format (top: graphical representation) 

3.3  A converter for obtaining the Deep track structures 

The beAWARE Deep UD grammars are used as an automatic converter to obtain the Deep 

UDs. The Deep UD grammars do not make any use of lexical resources; the predicate-

argument relations are derived using syntactic cues only. The deep input is a compromise 

between correctness and adequacy in a generation setup. Indeed, the conversion of the UD 

structures into predicate-argument structures depends not only on the mapping process, but 

also on the availability of the information in the original annotation. Table 1 (repeated from 

D3.3) shows the different labels that the Deep UD grammars currently produce. More 

information can be found in D3.3. 

Table 1: Semantic labels in the output of the UD-based pipeline 

Semantic 
label 

Type Description Example 

A1/A1INV Core 1st argument of a predicate build-> an architect 

A2/A2INV Core 2nd argument of a predicate build-> a building 



  D8.13 -V0.8 

 

Page 19 

A3/A3INV Core 3rd argument of a predicate inaugurate-> on March 15 

A4, A5, A6 Core 4th to 6th arguments Very uncommon 

AM Non-Core None of governor or dependent 
are argument of the other 

build-> next to the museum 

LIST Coordinative List of elements built-> and-> inaugurated 

NAME Lexical Part of a name Chrysler-> Building 

DEP UKN Undefined dependent N/A 

 

As described in D3.3, our Deep UD grammars are rules that apply to a subgraph of the input 

structure and produce a part of the output structure. During the application of the rules, both 

the input structure (covered by the left side of the rule) and the current state of the output 

structure at the moment of application of a rule (i.e., the right side of the rule) are available 

as context. The output structure in one transduction is built incrementally: all the rules are 

evaluated and the ones that match a part of the input graph are applied and a first piece of 

the output graph is built. Subsequently, the rules are evaluated again, this time with the right-

side context as well, and another part of the output graph is built, and so on. The transduction 

is over when no rule is left that matches the combination of the left-side and the right-side. 

As an example, we present a sample rule from the SSynt-DSynt mapping in Figure 9. This rule, 

in which we can see the left-side and the right-side fields, collapses the functional prepositions 

(?Xl, identified during the pre-processing stage with the BLOCK=YES attribute/value pair) with 

their dependent (?Yl). That is, a functional preposition such as ‘by’ in ‘built by Y’ is removed 

from the output structure and made to correspond to the right-side node Y (i.e., the 

dependent). The right-side context is indicated by the prefix ‘rc:’ before a variable or a 

correspondence2. In practice, this means that the rule looks for the ‘rc:’-marked elements in 

the current state of the output structure and builds the elements that are not ‘rc:’-marked; in 

this case, the correspondence between the right-side ‘Y’ and the left-side ‘by’ and the new 

feature ‘original_deprel’, which stores the left-side incoming dependency relation. A similar 

rule would apply to ‘firm’ and ‘of’, with ‘of’ being the dependent in this configuration (see 

Figure 7). As a result of the application of this rule, only ‘firm’ is left in Figure 8, which has a 

correspondence with both ‘firm’ and ‘of’ from Figure 7. 

                                                      

2 Correspondences are meta-information used during the transduction. They are not explicit as such in the output 

structure. In order to maintain the alignments between surface and deep nodes, attribute/value pairs can be 

used: e.g. if “by” has a surface identifier “id=2”, and “Y” id = “3”, the deep “Y” node could have two identifiers 

“id=2,3” to mark the correspondence. 
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Figure 9: A sample graph-transduction rule. ‘?’ indicates a variable, ‘?Xl{}’ is a node, ‘?s’ is a relation, 

‘a=?b’ is an attribute/value pair. 

*Includes rules that simply copy node features (~50 per grammar) 

 sums up the current state of the graph-transduction grammars and rules for the mapping 

between surface-syntactic structures and UD-based semantic structures. The main 

improvements since D3.3 are 

i. the support for three additional languages, namely Chinese, French and Portuguese, 

ii. an increase of the number of rules, to account mainly for the coverage of the new 

languages and of new phenomena present in the latest version of the UD data, 

iii. the addition of two new rule sets for allowing different downstream applications to 

use the knowledge encoded in the UD trees (Graph UD and Deep-Syntax in the sense 

of the Meaning Text Theory; see D3.3 Section 6.2.2). 

Table 2: Graph-transduction rules for UD-based deep parsing  

Grammars # rules D3.3* #rules D3.4* Description 

Pre-processing 76 93 
Identify nodes to be removed 
Identify verbal finiteness and tense 

SSynt->Deep UD 120 147 

Remove idiosyncratic nodes 
Establish correspondences with surface nodes 
Predict predicate-argument dependency labels 
Replace determiners, modality and aspect markers by 
attribute-value feature structures 
Identify duplicated core dependency labels below 
one predicate 

Post-processing 60 73 

Replace duplicated argument relations by best 
educated guess 
Identify remaining duplicated core dependency labels 
(for posterior debugging) 

Deep UD->Graph UD - 70 Converts the Deep UD tree into a graph 

Deep UD->DSynt - 72 Converts the Deep UD tree into a Deep-Syntactic tree 

*Includes rules that simply copy node features (~50 per grammar) 
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3.4  Dataset variety and sizes 

Table 3 shows the properties of the respective SR’18 datasets in terms of number of 

sentences (Mille et al., 2018).  

Table 4 shows the dataset variety and sizes at SR’19. For SR'19 (Mille et al., 2019), new 

languages and data features were introduced, in particular: 

 Evaluation: Both in-domain and out-of-domain data were used in the test data. For 

some languages, automatically parsed texts needed to be generated. 

 Data alignment: In the training sets, the Shallow data were fully aligned with the 

original UD structures and the Deep data were fully aligned with both the original and 

Shallow structures. 

 Relative word order information: Relative word order information in Multiword 

Expressions, punctuations and multiple coordinations was available in the input. 

 Multiple datasets: For some languages, there were two or more UD datasets. The 

teams were allowed to choose which dataset(s) they want to use for training their 

models. 
Table 3: SR’18 dataset sizes and splits. 

 
 

Table 4: SR’19 dataset sizes and splits 
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3.5  Evaluation of the quality of deep datasets 

Since the processing applied to the Shallow inputs is very straightforward and is limited to 

removing information, it does not call for an evaluation. For the Deep Track, however, the 

changes are much more complex, and the quality of the conversion needs to be assessed. We 

evaluated the quality of the Deep inputs as follows. We manually annotated around 900 deep 

tokens (75 sentences) in each language (English and Spanish), by post-editing the 

automatically converted structures, correcting any mistakes. Since the same person post-

edited all three datasets, the resulting gold-standard is consistent across the languages, even 

though it does not allow for calculating inter-annotator agreement. Once post-edited, the 

reference structures are compared to the ones produced by the automatic mapping from UD 

structures. Since part of the mapping consists of adding and/or removing nodes, it often 

happens that the gold-standard and predicted structures end up with a different number of 

nodes, which makes evaluation scripts based on a strict node-to-node comparison unusable. 

Thus, we use the LAS evaluation method of Ballesteros et al. (2015), specifically designed to 

handle the comparison between non-isomorphic trees.  

Language LAS 

English 79.83 

Spanish 67.28 

 shows the results of the evaluation. 

Quality is not the same across the two languages; while English structures obtain a LAS of 

79.83, Spanish is more than 12 points lower. Since the mapping grammars are largely 

language-independent, and since roughly the same efforts have been dedicated to each 

language, it is likely that the LAS numbers reflect the quality of the original UD annotation. 

Note that during the evaluation, Part of Speech (PoS) errors and lemmatisation errors are not 

corrected but structural errors due to original tagging/lemmatising errors are counted. In 

other words, what is being evaluated is how correct the outputs are in terms of dependencies 

and labelling, rather than how well the transduction grammars perform. Error analysis showed 

that most dependency errors come from the AM relation, which is usually A1, A2, A1INV or 

A2INV in the reference structures. The systematic replacement of AM by one of these four 

labels always results in a drop of the LAS score. That is, in order to improve the quality of the 

structures, an improvement of the UD structures or a more fine-grained processing (which 

would imply a large number of rules and the use of detailed lexicons) would be needed. 

Table 5: Evaluation of the quality of the output structures (Labeled Attachment Scores - LAS). 

Language LAS 

English 79.83 

Spanish 67.28 
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4 Multilingual report generation  

This section focuses on the extension of UPF’s multilingual discourse generators developed 

for multilingual report generation in a series of European projects to an incremental 

expressive generator that fits the needs of the beAWARE MRG pipeline. 

4.1  General approach and summary of advances 

As detailed in D5.2, discourse generation starts from the ontological assertions that comprise 

the content inferred through the interplay of the interaction manager and the knowledge 

base. Ontology substructures are mapped onto minimal Predicate-Argument (PredArg) 

templates, which are then aggregated together into more complex semantic graphs, which, in 

turn, are realised into well-formed sentences in several steps. The generation is performed 

step by step, by successively mapping one level of representation onto the adjacent one. 

There are in practice 14 successive mappings (for instance, the aggregation takes place in 4 

sub-steps) summarised in the following 6 transitions, to be used as references for Table 6 (Sub-

section 4.2.4), with illustrations in Spanish and English. 

Start (input): Ontology mapped to individual Predicate-Argument Templates (Con) 

 

Figure 10: Start (input) 

1) Aggregation: Aggregation of conceptual Predicate-Argument Templates (Con) 
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Figure 11: Aggregation 

2) Con-Sem: Mapping to language-specific Semantic Structures (Sem) 

  

Figure 12: Con-Sem in Spanish 

  

Figure 13: Con-Sem in English 
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3) Sem-DSynt: Sentence structure determination (mapping to Deep-Syntactic Structures - 

DSynt) 

  

Figure 14: Sem-DSynt in Spanish 

  

Figure 15: Sem-DSynt in English 
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4) DSynt-SSynt: Introduction of idiosyncratic words and relations (mapping to Surface-

Syntactic Structures - SSynt) 

  

Figure 16: DSynt-SSynt in Spanish 

 

Figure 17: DSynt-SSynt in English 

  



  D8.13 -V0.8 

 

Page 27 

5) SSynt-DMorph: Linearisation and morphological agreement resolution (mapping to 

Deep-Moprhologic  Structures - DMorph) 

 

 

Figure 18: SSynt-DMorph in Spanish (partial) 

  

Figure 19: SSynt-DMorph in English (partial) 

  



  D8.13 -V0.8 

 

Page 28 

6) DMorph-SMorph: Retrieval of surface forms (mapping to Surface-Morphologic 

Structures - SMorph) 

Spanish (partial): 

 

Figure 20: DMorph-SMorph in Spanish (partial) 

 

Figure 21: DMorph-SMorph in English (partial) 

End (output): Full-fledged report: 

 

The underlying linguistic framework is the Meaning-Text Theory (Mel'čuk, 1988), which 

foresees a very similar stratification in language description. Each transition is performed with 

graph-transduction grammars, using the MATE environment (Bohnet and Wanner, 2010) and 

for some of the transitions we have developed advanced techniques.  In this section, we 

mainly report the following improvements since D5.2:  

 Basic techniques: 

o Increase of the coverage of the language-specific generation grammars, in 

particular for English and Spanish, 

o Increase of the coverage and quality of the language-independent grammars; 

in particular of the semantic aggregation module to package the beAWARE 

summaries coherently into small texts. 

 Advanced techniques: 

o Development of new deep learning linearisers for English, Spanish, Italian and 

Greek. 

4.2  Main improvements in the grammars and lexicons of the rule-based 

generator 

4.2.1   Extensions to language-independent rules 

In D5.2, we reported on the development of the rule-based generator, which performs all the 

transitions between two consecutive layers using graph-transduction grammars. For the 

Spanish: Se han reportado viento fuerte y humedad en La Devesa. Riesgo de fuego, 

viento fuerte y calor. Fuego en La Devesa. Se ha reportado calor en Valencia. 

English: Strong wind and humidity have been reported in La Devesa. Risk of fire, strong 

wind and heat. Fire in La Devesa. Heat has been reported in Valencia. 
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specific needs of beAWARE, since D5.2, the main improvement needed to complete the final 

prototype was the development of better aggregation grammars that combine the PredArg 

structures together into what will be realised as a single sentence, in a way that supports the 

summaries that need to be provided by the beAWARE platform. 

With the extension of the aggregation grammars, there are 5 main types of aggregation 

currently supported. Each type includes several subtypes based on the context in which the 

contents to be aggregated appear. We describe here the 5 types of aggregations that take 

place within the Predicate-Argument templates, which involve the following types of 

components: 

 Predicates Pn, which usually correspond to a main verb: report, detect, impact, 

overflow, etc. 

 Arguments An, which are the participants of the predicates: fire, flood, person, 

building, river, etc.  

 Argument slots Sn, which are the type of relation that links a predicate with an 

argument: first slot (someone detects), second slot (something is detected), etc. In the 

beAWARE context, so far there is only one argument slot for each predicate, but the 

aggregation rules support also multiple argument slots. The examples to illustrate 

these cases are made up and do not correspond to actual outputs produced by the 

MRG pipeline. 

 Locations Ln, which specify the place where the event denoted by the predicate or the 

argument took place: el Saler, Mateotti Square, Valencia, etc.  

 Times Tn, which specify the time when the event denoted by the predicate or the 

argument took place: 2PM, midnight, etc. These are usually not verbalised by the MRG 

pipeline since the reports are sent together with the corresponding timestamp.  

The aggregation rules examine all Predicate-Argument templates, and group two or more of 

them (the same value for the index n indicates sameness): 

1) Fusion of predicate and one argument: if two or more predicates, one of their 

arguments and the relation between them (the argument slot) are the same, we bring 

the other arguments/locations together, either by coordinating or juxtaposing them, 

depending on the configuration. 

Coordination: [Fire]A1S1 [detected]P1 [in Valencia]L1 + [Fire]A1S1 [detected]P1 [in el 

Saler]L2 = Fire detected in Valencia and el Saler. 

Juxtaposition: [Fire]A1S1 [detected]P1 [in Valencia]L1 + [Fire]A1S1 [detected]P1 [at 

2PM]T1 = Fire detected in Valencia at 2PM.  

2) Fusion of predicate and location (or time): if a predicate and the location (or time) is 

the same, but one argument is different (but with the same slot), then the arguments 

are coordinated. 

[Two persons]A1S1 [are impacted]P1 [in Valencia]L1 + [Three dogs]A2S1 [are impacted]P1 

[in Valencia]L1 = Two persons and three dogs are impacted in Valencia. 

3) Fusion of predicate only: if two predicates have different arguments with the same 

argument slot, we coordinate the arguments. 
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[Fire]A1S1 [detected]P1 + [Smoke]A2S1 [detected]P1 = Fire and smoke detected. 

4) Coordination of predicates: if two predicates are the same but have no argument slot 

in common, or they have one argument slot in common but the argument is not the 

same, the predicates are coordinated. In this case, the second occurrence of the verb 

is elided in order to avoid repetitions. 

[Two persons]A1S1 [are impacted]P1 [in Valencia]L1 + [Three persons]A2S1 [are 

impacted]P1 [in el Saler]L2 = Two persons are impacted in Valencia and three persons 

in el Saler.  

5) Fusion of one argument only: if two arguments are the same, but the surrounding 

elements are different, we introduce an embedded clause (relative or participial 

clause). This type of aggregation covers what is referred to as subject progression and 

object progression in the literature. 

[Fire]A1S1 [detected]P1 [in Valencia]L1 + [Fire]A1S1 [reported]P2 [in el Saler]L2 = Fire, 

which was detected in Valencia, is reported in el Saler. 

Note that the rules sometimes find more than one possible aggregations, but only one type 

applies at a time. However, there are two rounds of aggregation, which means that complex 

aggregations are possible: 

 Fire, which was detected in Valencia, is reported in el Saler and la Devesa. 

In order to foresee the packaging of the sentences, starting from complex semantic graphs 

instead of minimal triple-based structures, we developed a statistical sentence packaging 

module based on community detection algorithms. Since the work was not part of the DoA, 

we do not report in detail on this tool; the experiments are described in (Shvets et al., 2018). 

In addition to adding functionalities to generator, some detected issues after the evaluation 

of the first prototype were fixed. Indeed, even though FORGe received good evaluation marks 

at the WebNLG challenge, as shown in D5.2, especially in the human assessments, according 

to which it was close to the quality of human-written text, after an error analysis of FORGe's 

outputs, we found a series of general problems impairing the quality of the generated texts in 

terms of contents and grammaticality. In particular: (i) some properties were not verbalised 

due to the failure to produce relative clauses in some specific cases, (ii) the aggregations were 

at times excessive, erroneously  merging verbs with different tenses  (e.g. X impacted Y, which 

was impacted by Z, instead of X and Z were impacted by Y), failing to merge  (e.g. X was 

impacted by Y. Z was impacted by Y), or leading to an ungrammatical outcome, with, for 

instance, the presence of several ‘also’, (iii) the construction of some relative clauses were 

faulty, as e.g. X can a variation of which be Y, instead of X, which can be a variation of Y; (iv) 

the referring expression module was applying excessively, resulting in ambiguous pronouns, 

and sometimes incorrectly pronominalising non-human entities with ‘he’, or failing to 

pronominalise locations, such as in ‘A fire has been detected in Valencia. Fire in Valencia’, the 

second sentences being more naturally rendered by ‘Fire there’, (v) some agreements were 

not solved (e.g. ‘the main ingredient are’), (vi) some determiners were erroneously 

introduced, and some others not in the correct form (a instead of an). All these issues could 

potentially affect beAWARE outputs, in case such cases would be found in the inputs to the 
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generator. Many occurrences of these issues were fixed in the grammars, by modifying and 

adding rules, and some new features were added, as for instance new rules to cover more 

cases of embedded clauses generation. For developing the grammars, we used the collection 

of beAWARE inputs, 6 and 7 triple inputs from the WebNLG training data, and the whole 

WebNLG development set. A qualitative evaluation of the new outputs is provided in Section 

5.1. 

4.2.2   Extensions to the Spanish rules 

The final pilot in beAWARE was on the Spanish use case. Since the necessary coverage of the 

generator had been previously ensured for the Greek and Italian use cases, we took advantage 

of the Valencia pilot to increase significantly the coverage of the rules for the Spanish part of 

the generator. 

The most important rules added for Spanish are: (i) rules introducing the surface-syntactic 

relations, based on which linear order and morphological agreements are resolved, (ii) rules 

for gender and number agreements in noun groups and auxiliary constructions, and (iii) word 

ordering rules. Note that the rules for Spanish also apply to other Romance languages with 

similar features (e.g. French, Italian, etc.). 

For designing the rules, we followed the approach of AnCora-UPF (Mille et al., 2013), a Spanish 

dataset in which each dependency relation is associated with a set of syntactic properties. For 

instance, a subject is characterised by being linearised to the left of its governing verb (by 

default), by being removable, by triggering the number and person agreements on the verb, 

etc. During the linguistic generation stage, 27 out of the 47 relations proposed in AnCora-UPF 

-namely adjunct, adv, agent, analyt_fut, analyt_pass, analyt_perf, analyt_progr, aux_phras, 

appos, attr, compar, coord, coord_conj, copul, det, dobj, iobj, modal, modif, obl_compl, 

obl_obj, prepos, punc, quant, relat, sub_conj, and subj- are currently supported. 

In order to generalise the ordering rules across languages, the dependencies were introduced 

in the lexicon with details about how they are linearised with respect to their governor 

(vertical ordering). Generic linearisation rules also apply. For instance, for the copul 

dependency (such as between be and detected), pronominal dependents are linearised 

BEFORE the finite verb, and the other dependents AFTER it. If several dependents end up at 

the same height with respect to their governor, they need to be ordered with each other. 21 

rules were added to manage these horizontal orderings. They facilitate the ordering of, for 

instance, determiners before the adjectives, or small adverbial groups before the objects. 

Finally, 18 rules for resolving the agreements between verb and subject, adjective/determiner 

and noun, copulatives and subjects, etc. were implemented. 

For instance, in the structure Un fuego3-MASC-SING y viento3-MASC-SING <-subj ser copul-> 

detectado, will be linearised and inflected as follows: Un fuego y viento son detectados (lit. `A 

fire and wind are3-PL detectedMASC-PL'). 
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4.2.3   Crafting the Spanish dictionaries 

Several types of dictionaries are needed for generation of: (i) a dictionary that maps the input 

meanings/concepts onto lexical units of a particular language (called concepticon), (ii) a 

dictionary that contains the combinatorial properties of each lexical unit (lexicon), (iii) a 

dictionary with the full forms of the words (called morphologicon). Some other information, 

such as linearisation properties of dependencies are also better stored in the lexicon in order 

to allow for more generic (hence less numerous) rules. 

In our generation architecture, the input structured data (ontology substructures or DBpedia 

properties) are mapped to PredArg structures. For the WebNLG challenge, English was the 

only language to generate, so the labels of the nodes in the PredArg templates were in English. 

In order to take advantage of the templates developed for FORGe in 2017, we also used these 

structures with English vocabulary as input to the generator. Thus, we manually crafted the 

concepticon (255 entries), in which the keys are the predicates from the templates, and the 

values are lexical units in Spanish; for instance, the predicate locate is mapped to the Spanish 

verb estar_VB_04 (‘be’). 

In the lexicon, lexical units such as estar_VB_04 are described; this fourth entry for estar 

corresponds to a verb that has two arguments, the second being an adverb or a prepositional 

group. estar_VB_01 is the simple copula, estar_VB_02 is the existential be, which has only one 

argument, and estar_VB_03 is the auxiliary. Each lexical unit contained in the concepticon is a 

key in the lexicon. A fine-grained lexicon has been crafted manually for the beAWARE and 

WebNLG experiments, and we developed an automatic conversion of the large-scale AnCora-

Verb (Aparicio 2008) to obtain a large coverage resource. Finally, in order to store the surface 

forms of the inflected words, we crafted a very small morphological dictionary of about 450 

entries to cover the needed forms in the experiments. 

4.2.4   Overview of the evolution of the FORGe generator in beAWARE 

Table 6: Comparison between Initial, P2 and P3 generators. The table summarises the improvements of the 
components of the generator during the course of the project. 

  beAWARE Start beAWARE D5.2 beAWARE D5.3 

Languages   EN (+very basic ES) EN, IT, ES, EL EN, IT, ES, EL 

Number of 
rules  and % of 

language-
independent 

rules 

ALL Con-SMorph (1060) : 66% Con-SMorph (1,373) : 70% Con-SMorph (1,742) : 70% 

 1) Con-Sem (358) : 93% 

2) Aggregation (0) : N/A 

3) Sem-DSynt (157) : 73% 

4) DSynt-SSynt (331) : 42% 

5) SSynt-DMorph (130) : 54% 

6) DMorph-SMorph (35) : 51% 

1) Con-Sem (416) : 94% 

2) Aggregation (212) : 91% 

3) Sem-DSynt (177) : 75% 

4) DSynt-SSynt (307) : 39% 

5) SSynt-DMorph (172) : 48% 

6) DMorph-SMorph (89) : 55% 

1) Aggregation (251) : 100% 

2) Con-Sem (429) : 98% 

3) Sem-DSynt (220) : 71% 

4) DSynt-SSynt (451) : 46% 

5) SSynt-DMorph (230) : 53% 

6) DMorph-SMorph (161) : 40% 

Main linguistic 

phenomena 

supported 

EN  Advanced  sentence 
structure 
o Argumental dependents 
o Circumstantials 

 Lexicon-based introduction 
of functional elements: 
o Functional prep/conj 
o Modals and auxiliaries 

 Improved sentence 
structure: 
o Coordinations 
o Embedded clauses 
o Complex syntactic 

structures 

 Advanced linearisation  

 Improved linearisation 

 Improved aggregation 
strategies 

 Improved referring 
expressing expression 
generation 
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 Verbal agreements 
 

 Basic semantic and syntactic 
aggregations 

 Nominal compositionality 

 Basic structure well-
formedness checking 

 Complex support verb 
constructions 

 Complex relative clause 
construction 

 Advanced verb agreements 
(coordinations) 

 

IT N/A  Basic sentence structures: 
o Argumental dependents 
o Locative circumstancials 

 Lexicon-based introduction 
of functional elements: 
o Functional prep/conj 
o Auxiliaries 
o Determiners 

 Verbal, adjectival and det. 
agreements 

 Basic linearisation 

ES  Minimal sentence structure  Basic sentence structures: 
o Argumental dependents 
o Locative circumstancials 

 Lexicon-based introduction 
of functional elements:  
o Functional prep/conj 
o Auxiliaries 
o Determiners 

 Verbal, adjectival and det. 
agreements  

 Basic linearisation 

EL N/A  Basic sentence structures: 
o Argumental dependents 
o Locative circumstancials 

 Lexicon-based introduction 
of functional elements:  
o Functional prep/conj 
o Auxiliaries 
o Determiners 

 Verbal and det. agreements  

 Basic linearisation 

 Improved aggregation 
strategies 

 Embedded clauses 

Number of 

lexical units in 

lexicon 

EN 41,838 41,955 41,895 

IT 0 63 75 

ES 324 1,852 12,332 

EL 0 20 20 

BLEU score EN 31.78 35.53 (+11.80%) 39.84 (+25.36%) 

The above table summarises the extensions to the generator components, first with a count 

of the rules and lexical entries and a description of the covered phenomena in the different 

languages, and then with an objective evaluation of the quality of the outputs generated in 

English (last row). First of all, the aggregation now takes place before the mapping to 

language-specific structures, but the transition is essentially the same. The rule sets have been 

extended, with 70% more rules than at the beginning of the project (over 1,700 against about 

1,000 initially), and generally been made more language independent (70% VS 66% of 

language-independent rules). The Sem-DSynt and DMorph-SMorph transitions contain a 

higher proportion of language-specific rules. For the Sem-DSynt transition, this is because 

some rules are currently substituting information that should be in the lexicon. On the long 

term, these rules will be replaced by (fewer) language-independent rules and the language-

specific information will be stored in the respective lexicons. The reason is different for the 
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DMorph-SMorph transition, which is language-specific by nature, with the modelling of 

phenomena that are often highly idiosyncratic. Increasing the coverage of this grammar 

usually means adding language-specific rules, which makes their proportion increase. The last 

row of Table 6 shows the improvements of the performance of the generator on a generic 

dataset through the course of the project. Details on this evaluation are provided in Section 

5.2, after an evaluation of the generator on the most challenging beAWARE-like dataset 

publicly available. 

4.3  Development of a new deep learning-based lineariser 

As mentioned in the introduction, UPF changed the approach followed for the advanced 

modules during the course of the project. In this deliverable, we report on new experiments 

on the application of deep learning methods for multilingual syntactic linearisation (step 5 in 

the previous sections). Our objectives are: (i) to develop a novel set-to-sequence syntactic 

linearisation model in order to be able to (ii) compare it to the state-of-the-art neural 

linearisation systems (provided here) and (iii) analyse and discuss the hypothesis in the 

context of the result comparison. 

4.3.1   Related work 

Linearisation  can be classified as word ordering (de Gispert et al., 2014; Schmaltz et al., 2016; 

Hasler et al., 2017), when no syntactic information is available, or as decoding and syntactic 

tree linearisation, when syntactic information is available (Bohnet et al., 2012; Liu et al., 2015; 

Puduppully et al., 2016; Song et al., 2018). 

In the recent years and due to the resurface of the neural networks, there have been some 

efforts in applying neural-based approaches to the task but all of these works fall short with 

respect to the state of the art in linearisation, represented by Puduppully et al. (2016) on 

English data and Bohnet et al. (2012) in multilingual data. One of our hypotheses is that most 

of the recent works in neural linearisation  are based on sequence-to-sequence architectures, 

transferred from other tasks like tagging or parsing, but the linearisation problem input is a 

set, not a sequence, so the problem should be approached as a set-to-sequence problem (for 

word ordering) or a tree-to-sequence (for syntactic tree linearisation). We want to test that 

hypothesis by exploring a novel linearisation approach based on Gu et al. (2019). 

In the syntactic linearisation task, like in any AI task, there are two main approaches: rule-

based and statistical. Rule-based approaches map phrase or dependency structures to an 

ordered word sequence using manually crafted grammars that encode linguistic knowledge. 

Many different works have been produced, from the early works on phrase structure 

grammars (Kathol and Pollard, 1995, Langkilde and Knight, 1998, Rambow and Joshi, 1997) to 

the more recent on dependency-based grammars (Gerdes and Kahane, 2001, Bohnet, 2004). 

However, most of the research nowadays is carried out with statistical approaches, as shown 

by the state-of-the-art results obtained by Bohnet et al. (2012), which take a statistical tree 

traversal strategy, or Puduppully et al. (2016), who opt for a transition-based algorithm. 
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Moreover, in the two editions of the Shared Task on Surface Realisation – SR’11 (Belz et al., 

2011) and SR’18 (Mille et al., 2018) – the top performing systems were all statistical: in SR’11, 

Bohnet et al. (2011) presented a stack of SVM-based decoders, Guo et al. (2011) proposed a 

n-gram language model, and Stent (2011) also participated with a n-gram language model. In 

SR’18 Ferreira et al. (2018) used two maximum entropy classifiers and Moses Machine 

Translation toolkit (Koehn et al., 2007) and King and White (2018) combined a neural encoder-

decoder for morphological inflection with a passive-aggressive classifier for linearisation. And 

looking among the participant systems in the SR’18, it is manifested that neural networks have 

been widely adopted in the NLP community: 6 out of 8 systems have a neural network 

component. 

Syntactic linearisation has also been addressed as word ordering, which assumes that only 

surface information – i.e. words, as opposed to morpho-syntactic information – is available 

for linearisation. Hasler et al. (2017) perform a comparison of the recent advances in word 

ordering, proposing a bag-to-sequence model and comparing it to other language model 

approaches. Results are compared to those of Schmaltz et al. (2016) and de Gispert et al. 

(2014) systems.  

One of the main challenges of linearisation is to deal with non-projective sentences. Projective 

sentences are those sentences in which dependencies can be drawn without any crossing 

edges on ordered words. Let’s see an example in order to better understand the issue applying 

a tree-traversal bottom-to-top linearisation strategy. In Figure 22, we are going to process first 

[federal]. As a leaf in the dependency tree, we order it with respect to its father [support], and 

it should be placed at the left of [support]. We continue with the next step and [federal 

support] should be placed at the left of its parent [should]. Now let us see what happens with 

the other side of [should] subtree. As a leaf, [what] is ordered with respect to [achieve], which 

is its parent and should be placed at the left of it. Now, when ordering [what achieve] with 

respect to its parent [to], it should be placed at the right side of [to]. But we are going to end 

up with a wrong linearisation, since the [what achieve] is not the correct order. 

 

Figure 22: A non-projective example from the Penn TreeBank. 

Many of the statistical approaches that work by traversing the tree structure (Guo et al., 2011; 

Bohnet et al., 2011) or rely on transition-based algorithms, like Song et al. (2018), do not deal 

with non-projective word orders. But non-projectivity has received considerable attention in 

relation to data-driven parsing and several strategies have been developed to deal with it. For 

example, Bohnet et al. (2012) trained a model to predict when to apply a reversible pseudo-

projectivisation strategy in order to be able to process non-projective sentences. King and 

White (2018) introduced a specific “discontinuity feature” in order to allow the model to deal 

with limited non-projectivities, relaxing the requirement of the next predicted word being a 

children of the previous word (the authors do not present much more detail about it). In 
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contrast, many of the algorithms for neural linearisation do not impose such restrictions 

(Hasler et al., 2017; Schmaltz et al., 2016) but the results are still far from the state of the art. 

4.3.2   Fundamentals 

Encoder-decoder architecture 

The encoder-decoder architecture is a widely used neural network architecture where the 

input is encoded, condensing the useful information in a fixed size representation, and used 

by the decoder to produce a result. In NLP, dealing with sequence is quite common, as many 

of the structures NLP works with are sequences (sentences are sequences of words, 

documents are sequences of sentences, speech is a sequence of sounds, etc.). Thus, the main 

component of an NLP neural encoder-decoder system usually is a recurrent neural network 

(RNN). RNNs are a type of neural network that processes a temporal sequence (see Figure 23). 

Each time-step receives a new word and information from previous processed words. As this 

information is passed time-step to time-step, degrades over time (vanishing gradient). Thus, 

long range dependencies cannot be captured properly by basic RNNs. In order to overcome 

this degradation problem, improved RNNs like LSTMs (Sutskever et al., 2014) or GRUs (Cho et 

al., 2014) were developed. The main difference between basic RNNs and LSTMs/GRUs is that 

the later allow the error to be back-propagated untouched.  

 
Figure 23: An unfolded recurrent neural network. Each word is processed as one time-step and 

influences the next words 

Attention 

An attention mechanism shows the importance of each element of a set/sequence for the 

prediction of another element. In particular, if such an element belongs to the same 

set/sequence being evaluated, it is considered to be self-attention mechanism. Some popular 

attention mechanisms are summarised in Table 7: 

Table 7: Summary of the different attention mechanisms (Weng, 2018) 
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Auto-regressive system 

An auto-regressive system conditions the prediction on previous predictions, that is, at each 

step the model consumes the previously generated symbols as additional input for the next 

prediction. Auto-regressive systems are used in many NLP generation tasks, like 

summarisation or translation. 

The Transformer 

The Transformer is an encoder-decoder with attention architecture, introduced by Vaswani et 

al. (2017). The main contribution of the Transformer is the replacement of the recurrent 

layers, commonly used in encoder-decoder architectures, with multi-head self-attention and 

feed-forward layers. The self-attention layer allows the system to access previous words, 

acting as the memory of a RNN. Specifically, the Transformer uses both forms of attention: 

self-attention layers in the encoder and in the decoder to emulate the RNN memory, and 

attention layers over the encoder output in the decoder, so the decoder can access the 

encoded sequence. The model shows state-of-the-art results and improved training times. 

Transformer’s architecture is depicted in Figure 24. 

Transformer-INDIGO 

Gu et al (2019) extended Transformer in order to be able to process sequences and sets of 

words (randomised sequences), capturing the generation order through self-attention. They 

conducted a set of experiments using different order setups (random, left-to-right, right-to-

left, syntactic, etc.) on four different tasks (word order recovery, machine translation, image 

caption and code generation), reporting competitive performance results. Gu et al. (2019) 

applied two techniques worth mentioning: adaptation of relative positions in self-attention 

from (Shaw et al. 2018) and insertion operations applying the ideas of Vinyals et al. (2015). 
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Figure 24: Transformer architecture 

Encoded relative positions 

Non-recurrent models do not guarantee encoding positions, so adding position information 

to the input helps the model when dealing with sequences. Specifically, Gu et al. (2019) 

implemented a variation of the relative position proposed by Shaw et al. (2018) that allows 

for inserting new positions without the necessity of updating/recomputing previous positions. 

Their model uses a ternary vector ri,j ∈ {−1, 0, 1} where the j-th element is defined as: 

 

where the elements in ri show the relative positions of word i with respect to all other words 

in the sequence. This relative representation can be mapped back to absolute position by: 

 

where n is the length of the sequence. 
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Pointer networks 

Vinyals et al. (2015) introduced an interesting neural model: a sequence-to-sequence model 

that computes the conditional probability of a sequence of indexes given a sequence of 

vectors, by estimating the terms of a probability chain rule: 

 

where P = {P1, ..., Pn } is a sequence of n vectors and CP = {P1, ..., Pm(P) } is a sequence of m(P) 

indices, each between 1 and n. In other words, this technique allows for computing the 

conditional probability of a permutation with repetition of the input. Also, in order to improve 

the model, it adds an attention mechanism to both the encoder and the decoder. 

4.3.3   Model 

We developed an extension of the Transformer (Vaswani et al., 2017) based on the ideas of 

Gu et al. (2019). To the best of our knowledge, this is the first fully attention-based set-to-

sequence auto-regressive linearisation model. The previous works addressed the task as a 

sequence-to-sequence task (Schmaltz et al., 2016, Song et al., 2018) but linearisation is a tree-

to-sequence or set-to-sequence task, as pointed out by Hasler et al. (2017). Other works 

modify the sequence-to-sequence encoder by replacing “the recurrent layer with non-

recurrent transformations” and by adding an attention mechanism. Also, they constrain the 

beam decoder by limiting the output vocabulary to the input bag and by reducing it at each 

step, thus guaranteeing that the output is always a valid permutation of the input. Similarly, 

we removed from the Transformer encoder the position encoding, removing from the 

transformer the position information for each input. Also, we trained TLin unconstrained on 

the encoded set, but we constrained the decoder on testing by masking the already chosen 

position in the encoded set, in order to guarantee a permutation of the input as output. We 

hypothesise that by training on a harder task should make the prediction better, but we need 

to run some experiments to prove it.  

We model the training input and output as follows. Given an ordered sequence w = (w1, ..., 

wT) and its corresponding sequence of correlative indexes i = (i1, ..., iT ), we randomise the 

indexes r = (r1, ..., rT ) and use them as the expected output of the system. By using these 

randomised indexes, we generate the input set z = (z1, ..., zT ) where zt is the word w of the 

original sequence w at position rt . For example, given a sentence, e.g. ”I like to eat apples .“, 

after tokenisation it would be a sequence of words: w = ["I", "like", "to", "eat", "apples", "."]. 

Then, we create a correlative index sequence, i = [1, 2, 3, 4, 5, 6] and randomise it, r = [2, 5, 1, 

6, 3, 4]. Now, we can create a randomised word sequence by taking each word from the 

ordered sequence and putting it in the position indicated by r, e. g., the 2nd ordered element 

is the 5th element of the randomised sequence: ["to", "I", "apples", ".", "like", "eat"]. This way, 

we have created the expected output r and the randomised input z. By taking the 

representation from the last layer of the Transformer we predict the next word yt+1 modeling 

the problem similarly to Pointer Networks (Vinyals et al., 2015).  
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Figure 25: TLin architecture 

 
Figure 26: The softmax on the output points to the 6th element of the input list, which is the word 

"eat". 
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5 Intrinsic evaluation of the final modules  

In this section, we present three different evaluations: 

 a qualitative and quantitative evaluation of the FORGe rule-based system on a 

standard ontological dataset, 

 a quantitative evaluation of the FORGe rule-based system on a large-scale generic 

dataset to compare it to the previous versions of the generator, 

 a quantitative evaluation of the advanced linearisation system. 

Note that the extrinsic evaluation of the generated reports have not been done since, at this 

point, there was no unseen test data to generate from. 

5.1  Quantitative and qualitative evaluation of FORGe on a standard RDF 

dataset 

The beAWARE use cases required the generation of texts of a specific domain with little 

variation in the inputs. In order to test the capacities of the beAWARE generator on a wider 

scale, we evaluated it again on the WebNLG dataset (in D5.2 we reported the best score 

obtained by FORGe at the WebNLG challenge). The reason for using as reference the WebNLG 

challenge dataset is that it is the most recent and comprehensive dataset with respect to text 

generation from RDF data (a standard ontology model as the one used in the beAWARE 

Knowledge Base), that has been specifically designed to promote data and text variety (Pérez 

et al, 2016). Moreover, it allows the direct comparison with the generators that participated 

in the challenge. In order to ensure future comparisons with machine learning-based systems 

in terms of their best obtained performance, only a subset of the original test set has been 

considered, which included the seen categories, i.e. only inputs with entities that belonged to 

DBpedia categories that were contained in the training data. 

In this section, we detail how we built a new dataset for evaluating the outputs of the 

generator and describe the results of the automatic and human evaluations. 

5.1.1   Selection of triples for evaluation 

For evaluation purposes, we compiled a benchmark dataset of 200 inputs, i.e., sets of DBpedia 

triples, with sizes ranging from 1 to 7 triples, using as reference pool the WebNLG challenge 

test set.  The compilation methodology for our benchmark dataset implements a twofold goal. 

On one hand, we want to ensure that all properties appearing in the seen categories subset 

are included. On the other hand, and unlike the WebNLG human evaluation test set, we aim 

towards a more balanced number of inputs of different sizes. In practice, since the inputs of 

size 6 and 7 in the original seen categories subset of the WebNLG test set are 24 and 21 

respectively, we chose to include them all in the benchmark. Thirty one (31) inputs for each 

of the remaining input sizes were subsequently added, by iterating over the reference test set 

and opting for the inclusion of inputs that: i) contain different properties or properties 

combinations rather than different property values and ii) contain, if none, the least possible 
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number of properties that have been already selected in a previous iteration. In this way, the 

different input sizes are represented in a better proportion, avoiding possible biases that may 

be introduced when favoring some input sizes over others (indicatively in the WebNLG seen 

categories test set, the ratio of inputs of size 6 and 7 over those of smaller sizes ranges from 

1 to 6 up to 1 to 9). Inevitably, the small number of inputs of size 6 and 7 initially available, did 

not leave any space for selection, hence these inputs have a rather high degree of overlapping 

properties. 

5.1.2   Reference sentences 

The English reference texts are taken from the WebNLG dataset, for which there could be 

more than one reference per triple set. For Spanish, one single reference text was produced 

for each triple set, with natural and grammatical constructions containing all the entities and 

relations in the triples. The reference texts were written by a native Spanish speaker, having 

at hand the English references from the WebNLG challenge to serve as a potential model. 

5.1.3   Automatic evaluation 

The predicted outputs in English and Spanish were compared to the reference sentences in 

the corresponding language. Three metrics were used: BLEU (Papineni et al., 2002), which 

matches exact words, METEOR (Banerjee and Lavie, 2005), which matches also synonyms, and 

TER (Snover et al., 2009), which reflects the amount of edits needed to transform the 

predicted output into the reference output. Table 8 shows the results of the automatic 

evaluation on the English and Spanish extensions proposed in Section 4.2 using for each input 

its corresponding reference text(s). The first two rows show that in terms of automatic 

metrics, the extended FORGe and the 2017 FORGe have almost the same scores on the English 

data (which are also very close to the WebNLG scores: 40.88, 0.40, 0.55). In other words, the 

quality improvements in English are not reflected by these metrics. To compare English and 

Spanish results, we calculated the scores using one sentence as reference (only one reference 

per text is available in Spanish). The English scores drop (third row) due to the way the scores 

are calculated by the individual metrics (BLEU matches n-grams in all candidate references, 

and METEOR and TER consider the best scoring reference). In the last row of the table, the 

scores of the Spanish generator look contradictory: the Spanish BLEU is 10 points below the 

English BLEU with the same number of reference (1), but METEOR is 8 points above, which 

means that the predicted outputs do not match the exact word forms, but they do match 

similar words. One reason for the low BLEU score could be the higher morphological variation 

in Spanish. However, the METEOR score is surprisingly high, actually even higher than the 

highest METEOR score at WebNLG, obtained by ADAPT and calculated with multiple 

references (0.44). 
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Table 8: English and Spanish scores according to BLEU, METEOR and TER, with 1 and All references on the 200-
triples test set. 

 

5.1.4   Qualitative analysis of the results 

In the 200 outputs of the 2017 generator, 275 errors were detected, compared to 166 in the 

current one in English (170 in Spanish), whereas 26.5% of the texts were error-free, as 

opposed to 43.5% now (45.5% in Spanish). In this section, we report on the qualitative 

evaluation of both English and Spanish outputs, in order to identify the main issues of the 

grammars in both languages. Outputs are available as supplementary material below. 

English errors 

The qualitative analysis of the generated English texts showed that the resulting texts are of a 

higher grammaticality and fluency than the 2017 ones. Below, we discuss the observed 

remaining errors and their respective causes. 

Determiners 

Although determiners are handled overall correctly, there are cases that a definite determiner 

should precede the mentioned NE. In some of these cases, for example in ‘acharya institute 

of technology was established in 2000’, the absence of the determiner can still be considered 

grammatically acceptable, while in others, for example in ‘arabian sea is located to the west 

of karnataka and st. louis is part of kingdom of france’, the determiner's absence is 

unequivocally erroneous. The missing determiner is traced back to the PredArg template that 

implements the involved DBpedia property and in particular to the assumptions underlying 

the semantic types of its respective arguments. For example, properties capturing information 

about administrative divisions (e.g., canton, state, city, country) and their respective part-of 

relations, as well as cardinal and inter-cardinal directions (e.g., west, southwest) range over 

entities denoting such subdivisions (i.e., names of cities, countries, regions, etc.), that in the 

general case do not admit a determiner. As a result, when an argument belongs to the 

exceptional cases, the generated text misses the determiner. 

Definite determiners are missed with the property ‘language', when referring to the language 

of a written work. The reason of this error lies in the discrepancy between the respective 

PredArg template that was defined based on the premise that the object value of this property 

is a language name (i.e., English, Italian), hence not admitting a determiner, and the form of 

the DBpedia language entities that in practice concatenate the language name with the word  

language (cf., English language). This type of error is the most frequent, being found about 65 

times in the test set and representing about 40% of the total amount of errors (166). 

This underlies the need for further normalisation of the DBpedia property values, so that 

during the PredArg templates instantiation, consistent linguistic features will be ensured for 

argument values of the same type.  
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Tense 

Errors are observed with respect to the verb tense selection (6% of the errors). More 

specifically, in some cases the present tense is used instead of the past, as, e.g., in ‘Alan 

Shepard, who graduated from NWC in 1957 with a M.A., is deceased. [...] He is a test pilot.’ 

This is a direct consequence of the fact that in the current implementation, tense selection 

does not take into account the temporal context as defined by the rest of the input triples.  

Aggregations 

Another type of error relates to the generation of unintuitive, yet still grammatical, constructs 

when aggregating the contents of more than one triple, when certain properties are involved 

(11% of the errors). More specifically, when the property ‘occupation' is selected to be 

expressed as a relative clause, it fails to append the occupation information to the referring 

entity as shown in Alan Bean, born in wheeler (Texas) on March 15, 1932, is from the United 

States (test pilot). Similar behaviour has been observed with the property ‘category'. This is a 

result of the current implementation of aggregation that takes place in a single step and tries 

to avoid orphan clauses, by attaching them to the closest reference head. Introducing iterative 

aggregation steps and incorporating semantic coherence information would mitigate such 

effects. 

A related issue is the way location information is verbalised in the presence of multiple 

subdivision references (15% of the errors), as for example, in the ‘Acharya Institute of 

Technology is in Bangalore, Karnataka and India’, where the three involved location-denoting 

properties, namely ‘city', ‘state' and ‘country' have been aggregated in a semantics-agnostic 

manner. Navigating DBpedia and obtaining information about their interrelations would 

enable more fluent verbalisations. Fluency and meaning accuracy are also impacted when the 

input triples capture in practice n-ary relations. This is the case with the ‘leader' and 

‘leaderTitle' properties, which in the absence of any semantic pre-processing before the 

instantiation of the PredArg templates, results in verbalisations such as ‘the leaders of 

Romania are the prime minister of Romania and Klaus Iohannis’, which does not communicate 

the fact that Klaus Iohannis is the prime minister.  

Subject/Object values 

Last, a number of disfluent verbalisations is the direct result of idiosyncrasies in the involved 

DBpedia properties and/or the respective subject and object values (4% of the errors). There 

are properties that although meant to capture different types of information are not used 

consistently, thus impacting the resulting verbalisations. The properties ‘mainIngredient(s)' 

and ‘ingredient(s)' are such an example, e.g. in an input about the dish Ayam Penyet, which is 

described as having as main ingredient the fried chicken and as a further ingredient chicken. 

Some minor errors such as unnatural word ordering (11%) or lexicalisations (8%) were also 

detected. 

Spanish errors 

The aforementioned errors listed for English are mostly independent of the language and thus 

also apply to Spanish, except from the first aggregation error, which does not appear in 
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Spanish due to a difference in the templates. The determiner error represents 30% of the total 

number of detected errors (51/170), the location aggregation represents 12%, the values and 

word choices 7%, the ordering 6%, the verbal tense 5%. However, despite its overall good 

quality, Spanish has some additional specific issues. 

English words 

There are some not-translated nouns (52 minutes) or phrases (está dedicado a Ottoman army 

soldiers killed in the battle of Baku), which in addition of not being understandable, may 

produce subsequent morphological errors (21% of the errors).  

Morphology 

Morphological errors, mainly gender (invisible in English) and number disagreements, are 

found in the Spanish texts (5% of the errors).  For example, in ‘Dianne Feinstein es un senador 

de california’, (lit. ‘Dianne Feinstein is aMASC senatorMASC of California'), both a and senator 

should be feminine, but there is no information that D. Feinstein is a woman in the input.  

Complex relative clauses 

The main syntactic error is related to the genitive relatives with cuyo (‘of which'), in particular 

when the antecedent is a location (5% of the errors). For example, in the sentence ‘Alba Iulia, 

en el cual está el 1 Decembrie 1918 University’, lit. ‘Alba Iulia, in the which is the 1 Decembrie 

1918 University', the proper pronoun should be donde ‘where' instead of en el cual. Even when 

grammatically correct, sentences with these relative clauses tend to lack naturalness. 
 

Other series of errors that produce sub-optimal Spanish constructions include: occasional 

choice of a relative clause instead of a past participle modifier and various other constructions 

that lack naturalness (10% of the errors). 

5.2  Quantitative evaluations of FORGe on a large-scale generic dataset 

We also performed a second quantitative evaluation on a dataset that was already available 

at the beginning of the project, so as to assess the extent to which FORGe improved during 

the whole course of the project. As a metric, we use again the BLEU metric, as foreseen in the 

assessment plan. BLEU is an n-gram-based comparison score obtained by comparing a 

predicted output, produced by our generator, with the expected one. Single words, bigrams 

(sequences of two words), trigrams and quadrigrams in both outputs are compared and the 

similarity between them is calculated. As dataset, we use the whole evaluation section of the 

dependency version of the Penn Treebank (Johansson and Nugues 2007), converted to 

predicate-argument structures, using the semantic analyser described in (Mille, et al. 2017). 

In order to make the results fully comparable with the results at Month 0, the converted 

semantic structures are then sent to the FORGe generator, replacing the linearisation module 

by the same off-the-shelf linearisation tool used in the previous evaluation. As a result, the 

improvement of the score is due almost exclusively to the Sem-DSynt and DSynt-SSynt 

grammars, which are the core of the generation pipeline. The last row of Table 6 (Sub-section 

4.2.4) shows that the BLEU score increased successively from 31.78 to 35.53 and then to 39.84, 
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a score more than 25% higher than the baseline score obtained by the same generator at the 

beginning of the project. In terms of error reduction, the generator went from 68.22 (100 

minus 31.78) to 60.16 (100 minus 39.84), an error reduction of about 12%, better than the 

highest expectation of 10% defined in D1.2. 

5.3  Evaluation of the neural lineariser 

In order to compare the lineariser with existing work, we evaluated the performance of the 

system on the Penn TreeBank (Marcus et al., 1993) sections used in (Schmaltz et al., 2016). 

We then trained the lineariser on the UD datasets presented in Section 3, in order to cover all 

the beAWARE languages. 

For the Penn TreeBank evaluation, as is usual, we use sections 2-22 for training (40k 

sentences), section 23 for validation and section 24 for testing (2.5k sentences each). Gold-

standard dependency trees are extracted using pennconverter, a supersede of Penn2Malt. 

We test three different feature sets: 

 Forms only, as a regular word-ordering system. 

 Forms and Part-of-Speech (PoS), embedded and concatenated. 

 Forms, Part-of-Speech (PoS) and dependency label, embedded and concatenated. 
 
For evaluation, we use BLEU (Papineni et al. 2002), a precision metric that computes the 

geometric mean of the n-gram precisions between generated text and reference text and adds 

a brevity penalty for shorter sentences. We use the BLEU script ScoreBLEU.sh, which uses 

mteval-v13-ADRIA.pl script, both publicly available in the ZGEN repository. 

Before introducing the results, it is important to note that we have contextualised our results 

with previous work that uses beam search. We are aware that the results with beam size 1 

cannot be considered completely equivalent to a beam-less system like ours, since the beam 

at small sizes could be penalising the results. It remains as future work to introduce a beam 

search mechanism in the system. In Table 9, the results are compared with the beam setups of 

size 1 in Schmaltz et al. (2016). Our system outperforms Schmaltz et al. (2016) in any 

configuration with beam search size 1, even with additional training data (Gigaword). Results 

suggest that just by using a basic NGram model (NGRAM) is not enough to capture the order 

of the words of a sentence. Adding a future cost function, i.e. an estimate of the score 

contribution of the remaining tokens, improves the results but the score achieved is still lower 

than TLin’s. The same happens for Long short-term memory (LSTM), suggesting that using a 

sequence-to-sequence system is not suitable for the task and adding more resources 

(Gigaword) just confuses the system. 
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Table 9: BLEU score comparison on the PTB test set for word-ordering setups in Schmaltz et al. (2016), that is, 
using only surface information. We show the best results reported for each configuration. 

 

As can be seen in Table 10, compared to Song et al. (2018), our form-only configuration 

outperforms all LSTM-based setup with BeamSize = 1. Moreover, when PoS and dependency 

labels are added, our system outperforms all setups, regardless of the beam size. This, again, 

suggests that using a sequence-to-sequence strategy for this task is not adequate. It should 

be noted that our system achieves better results even without dependency structure 

information. 

Table 10: BLEU score comparison on the PTB test set for the syntactic linearisation task. We show the best 
results reported for each configuration. 

 

Comparing our PoS+dependency labels system setup to the word-ordering task systems 

reported in (Hasler et al., 2017), our results prove to be competitive, just 0.75 BLEU points 

below the best result, as can be seen in Table 11. These results suggest that the morpho-

syntactic information compensates the absence of beam search. 

Table 11: BLEU score comparison on the PTB test set between our system results and word-ordering system 
results, quoted from (Hasler et al., 2017). We show the best results reported for each configuration. 

 

Finally, in order to demonstrate that out lineariser can be used for other languages, in 

particular the ones addressed in beAWARE, we trained and evaluated TLin on the Universal 

Dependency annotations presented in this deliverable (Section 3). The results are not 

comparable to the ones obtained by the shared tasks participants (see Section 6.1), since at 

both SR’18 and SR’19, the teams were allowed to use external data and language models for 

training their systems. Table 12 shows the results obtained on the UD dataset for the four 

languages of beAWARE. It can be noticed that the results on the English dataset are 

comparable to the ones obtained on the Penn TreeBank (0.38 vs 0.43). The lower score on the 
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UD dataset is mainly due to the size of the training sets, 3 times bigger in the Penn TreeBank 

setup. The lower scores in Spanish and Italian (0.24 and 0.27) are likely due to the quality of 

the data: unlike the Spanish and Italian ones, the English annotations have been fully 

supervised (see the related comment in Section 3.5). Another reason for the drop may be that 

word order in Spanish and Italian could be harder to predict without using the syntactic tree 

information. Finally, the Greek dataset is very small, which is very harmful for neural systems 

and explains the important drop. The main lesson from this experiment is that the linearizer 

theoretically works for any language. We also trained it on German in order to see if it works 

on languages with a relatively free word order, and the BLEU score obtained is 31, which 

shows that it is the case. 

Table 12: BLEU scores of TLin on the UD data 

Language BLEU 

English   ~13K sentences 0.38 

Spanish  ~14K sentences 0.24 

Italian  ~13K sentences 0.27 

Greek ~2K sentences 0.16 
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6 Dissemination 

In this section, we summarise the two shared tasks that took place using the datasets 

described in Section 3 and list the papers related to language generation published in the 

framework of the project. 

6.1  The Surface Realisation Shared Tasks 

In 2018 and 2019, UPF organised the first and second multilingual Surface Realisation Shared 

Task (SR’18 and SR’19). The UD data were processed as detailed in the previous sections, and 

a subset of the data shown above in this section was provided to the participants. Outputs 

were evaluated according to 3 automatic metrics (BLEU, NIST and Normalised Inverted Edit 

Distance, DIST) and 2 human evaluations (Meaning similarity and Readability). Human-

produced outputs were also evaluated to serve: (i) as reference score in Readability, for which 

evaluators are asked to rate from 0 to 100, with a slider, the intrinsic quality of sentences, and 

(ii) as comparison for meaning similarity, for which evaluators were asked to rate from 0 to 

100 (with a slider too) if the meanings of two sentences were the same or not, one being a 

system output and the other one being the human reference. 

For SR’18, 21 international teams registered to the task and 8 teams submitted outputs. Table 

13 shows the results according to the BLEU metric. It can be observed that 2 teams managed 

to tackle all languages, but only one team addressed the deep task. Table 14: SR’18 human 

evaluations 

 shows the results of the human evaluations in three languages. The results show a gap 

between the quality of human-produced outputs and system outputs in terms of readability, 

in which the z column indicates the main score used for the rankings: 0.16z difference in 

English and 0.39z difference in Spanish. The full task overview and results have been published 

in (Mille et al, 2018).  

Table 13: SR’18 BLEU scores of the participating teams 
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Table 14: SR’18 human evaluations 

 
For SR'19 (Mille et al., 2019), 33 international teams (from 17 countries) registered to the task; 

14 of these teams submitted outputs, two of which withdrew their submissions at the last 

minute. New languages and features were introduced (see Section 0). Table 15 shows the 

results of the 12 teams in the Shallow Track according to the BLEU metric. This time, one can 

see than 4 teams addressed all 29 datasets (11 languages) and that 4 other teams addressed 

3 datasets and 9 languages. In Table 16, the scores for the Deep Track are presented, and 

again the increase in participation compared to SR’18 is clearly visible: 3 teams addressed the 

Deep Track, 2 of which for all datasets and languages.  

Finally, Table 17: SR’19 human evaluations: Meaning Similarity (left) and Readability (right) shows the 

results of the human evaluation on English and Spanish (for which system outputs originating 

from gold-standard and silver-standard data were evaluated). One can notice here that the 

gaps seen in the SR’18 evaluations between human texts and system outputs are closing: 0.78z 

in English and 0.65z in Spanish. Among other notable trends, we can observe that there is a 

notable gap between human assessment (higher) and metric assessment (lower) of deep track 

systems, in particular for the best deep track systems. The biggest progress was made in SR’19 

for Deep track systems: not only did we have multiple Deep Track systems to evaluate 

(compared to just one in 2018), but the best Deep Track system performed equally well or 

better than most Shallow Track systems for both Readability and Meaning similarity. Another 

notable development is the introduction of silver-standard data. Even though the quality of 

the texts obtained when generating from automatically parsed data is lower than when using 
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gold-standard data, the high scores according to human evaluations suggest that the shallow 

inputs could be used as pivot representations in text-to-text systems such as paraphrasing, 

simplification or summarisation applications. 

The participation level for such a task is rather high, and due to the success of these first two 

tasks, a third edition will take place in 2020. 

Table 15: SR’19 Shallow Track BLEU scores of the participating teams 

 

Table 16: SR’19 Deep Track scores of the participating teams 
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Table 17: SR’19 human evaluations: Meaning Similarity (left) and Readability (right) 



  D8.13 -V0.8 

 

Page 53 

7 Conclusions and Summary 

This deliverable reports on the final version of the MRG component, which is responsible for 

producing multilingual reports in the final prototype of the beAWARE platform. The main 

improvements performed during the second half of the project are: (i) the significant increase 

of the coverage of the language-specific generation grammars, in particular for Spanish, (ii) 

the increase of the coverage and quality of the language-independent grammars, in particular 

of the semantic aggregation module to package the beAWARE summaries coherently into 

small texts, (iii) the development of a new state-of-the art multilingual neural linearizer 

trained on a UD-based dataset developed for this purpose. 

The final beAWARE MRG makes use of the FORGe generation system. The advanced 

linearisation module can be used in case the rule-based system shows limitations in the 

coverage of its word ordering grammars. The FORGe generator has been largely improved 

during the course of the project and now achieves a relatively large coverage, in particular for 

inputs proceeding from structured data repositories such as DBpedia or the beAWARE KBS, in 

particular in English and Spanish (for Spanish, it is the first known DBpedia generator 

developed). The coverage of this generator is use case-specific for Italian and Greek, although 

many rules developed for the other languages also apply to these. Thanks to its flexibility and 

adaptability, FORGe got the best overall scores at the WebNLG international shared task. 

In terms of dissemination, during the course of the project, UPF produced 12 scientific papers 

and 2 technical reports (shared task system descriptions) related to the datasets and 

generation techniques. UPF also organised the first two shared tasks on multilingual surface 

realisation (and two corresponding workshops at ACL and EMNLP) to promote the datasets, 

with up to 14 submissions for the English data (the second highest participation to this day on 

a text generation shared task). 
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